Skip to main content

Gas-phase studies of the retinal protonated Schiff base chromophore

Abstract

Gas-phase studies of the retinal protonated Schiff base chromophore are reviewed. The use of action spectroscopy has solidified the understanding of the spectral-tuning mechanisms of this important chromophore. Ion-mobility spectrometry and gas phase femtosecond pump-probe spectroscopy studies indicate that several of the remarkable photo-isomerization properties of the chromophore such as its specificity and ultrafast nature are intrinsic properties of the chromophore. With a firm understanding of the properties of the isolated retinal chromophore in terms of spectroscopy and dynamics, the influence of the protein is becoming better understood.

This is a preview of subscription content, access via your institution.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors comment: this paper only reviews data which was published in earlier publications.]

References

  1. J.L. Spudich, C.S. Yang, K.H. Jung, E.N. Spudich, Annu. Rev. Cell Dev. Bi. 16, 365 (2000)

    Google Scholar 

  2. O.P. Ernst, D.T. Lodowski, M. Elstner, P. Hegemann, L.S. Brown, H. Kandori, Chem. Rev. 114, 126 (2014)

    Google Scholar 

  3. L. Hofmann, K. Palczewski, Prog. Retin. Eye. Res. 49, 46 (2015)

    Google Scholar 

  4. S. Brønsted Nielsen and J. Wyer (editors). Photophysics of ionic biochromophores. Physical Chemistry In Action, Springer, (2013)

  5. M. Garavelli, F. Negri, M. Olivucci, J. Am. Chem. Soc. 121, 1023–1029 (1999)

    Google Scholar 

  6. C.S. Page, M. Olivucci, J. Comp. Chem. 24, 298–309 (2003)

    Google Scholar 

  7. A. Cembran, R. Gonzalez-Luque, P. Altoe, M. Merchan, F. Bernardi, M. Olivucci, M. Garavelli, J. Phys. Chem. A. 109, 6597–6605 (2005)

    Google Scholar 

  8. M. Wanko, M. Hoffmann, P. Strodel, A. Koslowski, W. Thiel, F. Neese, T. Frauenheim, M. Elstner, J. Phys. Chem. B. 109, 3606–3615 (2005)

    Google Scholar 

  9. S. Sekharan, O. Weingart, V. Buss, Biophys. J. 91, L7–L9 (2006)

    Google Scholar 

  10. A. Cembran, R. Gonzalez-Luque, L. Serrano-Andres, M. Merchan, M. Garavelli, Th. Chem. Acc. 118(1), 173–183 (2007)

    Google Scholar 

  11. R. Send, D. Sundholm, Phys. Chem. Chem. Phys. 9, 2862–2867 (2007)

    Google Scholar 

  12. K. Bravaya, A. Bochenkova, A. Granovsky, A. Nemulkhin, J. Am. Chem. Soc. 129, 13035–13042 (2007)

    Google Scholar 

  13. K. Fujimoto, S. Hayashi, J. Hasegawa, H. Nakatsuji, J. Chem. Thoer. Comp. 3, 605–618 (2007)

    Google Scholar 

  14. M. Sun, Y. Ding, G. Cui, Y. Liu, J. Phys. Chem. A. 111, 2946–2950 (2007)

    Google Scholar 

  15. A. Altun, S. Yokoyama, K. Morokuma, J. Phys. Chem. B. 112, 16883–16890 (2008)

    Google Scholar 

  16. A. Altun, S. Yokoyama, K. Morokuma, J. Phys. Chem. B. 112, 6814–6827 (2008)

    Google Scholar 

  17. I. Schapiro, J. Phys. Chem. A. 120, 3353–3365 (2016)

    Google Scholar 

  18. S.S. Dong, L. Gagliardi, D.G. Truhlar, Phys. Chem. Chem. Phys. 20, 7265–7276 (2018)

    Google Scholar 

  19. J.K. Yu, R. Liang, F. Liu, T.J. Martínez, J. Am. Chem. Soc. 141, 18193–18203 (2019)

    Google Scholar 

  20. L.H. Andersen, I.B. Nielsen, M.B. Kristensen, M.O.A. El Ghazaly, S. Haacke, M. Brøndsted Nielsen, M.A. Petersen, J. Am. Chem. Soc. 127, 12347 (2005)

    Google Scholar 

  21. H.B. Pedersen, A. Svendsen, L.S. Harbo, H.V. Kiefer, H. Kjeldsen, L. Lammich, Y. Toker, L.H. Andersen, Rev. Sci. Instrum. 86, 063107 (2015)

    ADS  Google Scholar 

  22. K. Støchkel, U. Kadhane, J.U. Andersen, A.I.S. Holm, P. Hvelplund, M. Kirketerp, M.K. Larsen, M.K. Lykkegaard, S. Brøndsted-Nielsen, S. Panja, H. Zettergren, Rev. of Sci. Instrum. 79, 023107 (2008)

    ADS  Google Scholar 

  23. A. Svendsen, R. Teiwes, H.V. Kiefer, L.H. Andersen, H.B. Pedersen, Rev. Sci. Instrum. 87, 013111 (2016)

    ADS  Google Scholar 

  24. H.E. Revercomb, E.A. Mason, Anal. Chem. 47, 970–983 (1975)

    Google Scholar 

  25. S.L. Koeniger, S.I. Merenbloom, S.J. Valentine, M.F. Jarrold, H.R. Udseth, R.D. Smith, D.E. Clemmer, Anal. Chem. 78, 4161–4174 (2006)

    Google Scholar 

  26. N.A. Pierson, D.E. Clemmer, Int. J. Mass Spectrom. 377, 646 (2014)

    Google Scholar 

  27. B.D. Adamson, N.J.A. Coughlan, R.E. Continetti, J. Bieske. Phys. Chem. Chem. Phys. 15, 9540 (2013)

    Google Scholar 

  28. N.J.A. Coughlan, K.J. Catani, B.D. Adamson, U. Wille, E.J. Bieske, J. Chem. Phys. 140, 164307 (2014)

    ADS  Google Scholar 

  29. N.J.A. Coughlan, B.D. Adamson, L. Gamon, K. Catani, J. Bieske. Phys. Chem. Chem. Phys. 17, 22623 (2015)

    Google Scholar 

  30. Y. Toker, J. Langeland, E. Gruber, C. Kjaer, S. Brøndsted Nielsen, L.H. Andersen, V.A. Borin, I. Schapiro, Phys. Rev. A. 98, 043428 (2018)

    ADS  Google Scholar 

  31. L. Musbat, S. Assis, J.M. Dilger, T.J. El-Baba, D.R. Fuller, J.L. Knudsen, H.V. Kiefer, A. Hirshfeld, N. Friedman, L.H. Andersen, M. Sheves, D.E. Clemmer, Y. Toker, J. Am. Soc. Mass. Spectrom. 29, 2152 (2018)

    ADS  Google Scholar 

  32. L.H. Andersen, A.V. Bochenkova, Eur. Phys. J. D. 51, 5–14 (2009)

    ADS  Google Scholar 

  33. K. Katayama, S. Gulati, J.T. Ortega, N.S. Alexander, W. Sun, M.M. Shenouda, K. Palczewski, B. Jastrzebska, J. Biol. Chem. 194, 6082–6093 (2019)

    Google Scholar 

  34. J. Rajput, D.B. Rahbek, L.H. Andersen, A. Hirshfeld, M. Sheves, P. Altoe, G. Orlandi, M. Garavelli, Angew. Chem. Int. Ed. 49, 1790 (2010)

    Google Scholar 

  35. I.B. Nielsen, L. Lammich, L.H. Andersen, Phys. Rev. Lett. 96, 018304 (2006)

    ADS  Google Scholar 

  36. J.L. Langeland, A. Kluge, A.V. Bochenkova, H.V. Kiefer, L.H. Andersen, Phys. Chem. Chem. Phys. 20, 7190 (2018)

    Google Scholar 

  37. M.H. Stockett, M. Boesen, J. Houmøller, S. Brøndsted Nielsen, Angew. Chem. Int. Ed. 56, 3490 (2017)

    Google Scholar 

  38. J. Langeland, C. Kjær, L.H. Andersen, S. Brøndsted Nielsen, Chem. Phys. Chem. 19, 1 (2018)

    Google Scholar 

  39. T.W. Cronin, M.J. Bok, J. Exp. Biol. 219, 2790–2801 (2016)

    Google Scholar 

  40. I.B. Nielsen, M.Å. Petersen, L. Lammich, M. Brøndsted Nielsen, L.H. Andersen, J. Phys. Chem. A. 110, 12592 (2006)

    Google Scholar 

  41. F. Molnar, M. Ben-Nun, K. Schulten, J. Mol. Struct. Theochem. 506, 169–178 (2000)

    Google Scholar 

  42. S. Gozem, H.L. Luk, I. Schapiro, M. Olivucci, Chem. Rev. 117, 13502–13565 (2017)

    Google Scholar 

  43. Y. Toker, D.B. Rahbek, H.V. Kiefer, J. Rajput, R. Antoine, P. Dugourd, S. Brøndsted Nielsen, A.V. Bochenkova, L.H. Andersen, Phys. Chem. Chem. Phys. 15, 19566 (2013)

    Google Scholar 

  44. L. Musbat, M. Nihamkin, S. Ytzhak, A. Hirshfeld, N. Friedman, J.M. Dilger, M. Sheves, Y. Toker, J. Phys. Chem. A 120, 2547–2549 (2016)

    Google Scholar 

  45. D.P. Demarque, A.E.M. Crotti, R. Vessecchi, J.L.C. Lopes, N.P. Lopes, Nat. Prod. Rep. 33, 432–455 (2016)

    Google Scholar 

  46. N.J.A. Coughlan, B.D. Adamson, K.J. Catani, U. Wille, E.J. Bieske, J. Phys. Chem. Lett. 5, 3195–3199 (2014)

    Google Scholar 

  47. R.B. Van Breemen, L. Dong, N.D. Pajkovic, Int. J. Mass Spectrom. 312, 163 (2012)

    Google Scholar 

  48. C.W. West, J.N. Bull, J.R.R. Verlet, Phys. Chem. Lett. 7, 4635 (2016)

    Google Scholar 

  49. N.J.A. Coughlan, M.S. Scholz, C.S. Hansen, A.J. Trevitt, B.D. Adamson, E.J. Bieske, J. Am. Soc. Mass Spectrom. 27, 1483–1490 (2016)

    ADS  Google Scholar 

  50. L. Musbat, M. Nihamkin, Y. Toker, J.M. Dilger, D.R. Fuller, T.J. El-Baba, D.E. Clemmer, S. Sarkar, L. Kronik, A. Hirshfeld, N. Friedman, M. Sheves, Phys. Rev. E 95, 012406 (2017)

    ADS  Google Scholar 

  51. Y. Toker, O. Aviv, M. Eritt, O. Heber, D. Schwalm, D. Zajfman, Phys. Rev. A. 76, 053201 (2007)

    ADS  Google Scholar 

  52. P. Ferrari, E. Janssens, P. Lievens, K. Hansen, Int. Rev. Phys. Chem. 38, 405–440 (2019)

    Google Scholar 

  53. Y. Toker, A. Svendsen, A.V. Bocehnkova, L.H. Andersen, Angew. Chem. Int. Ed. 51, 8757 (2012)

    Google Scholar 

  54. A. Wand, I. Gdor, J. Zhu, M. Sheves, S. Ruhman, Annu. Rev. Phys. Chem. 64, 437–458 (2013)

    ADS  Google Scholar 

  55. J. Dilger, L. Musbat, M. Sheves, A.V. Bochenkova, D.E. Clemmer, Y. Toker, Angew. Chem. Int. Ed. 127, 4830–4834 (2015)

    Google Scholar 

  56. S. Gozem, I. Schapiro, N. Ferre, M. Olivucci, Science 337, 1225–1228 (2012)

    ADS  Google Scholar 

  57. N.A. Pierson, S.J. Valentine, D.E. Clemmer, J. Phys. Chem. B. 114, 7777–7783 (2010)

    Google Scholar 

  58. H.V. Kiefer, E. Gruber, J.L. Langeland, P.A. Kusochek, A.V. Bochenkova, L.H. Andersen, Nat. Commun. 10, 1210 (2019)

    ADS  Google Scholar 

  59. J.N. Bull, C.W. West, C.S. Anstoter, G. da Silva, E.J. Bieske, J.R.R. Verlet, Phys. Chem. Chem. Phys. 21, 10567 (2019)

    Google Scholar 

Download references

Acknowledgements

We are grateful to professor Evan Bieske for sharing with us the data which appears in Fig. 2b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Toker.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toker, Y., Andersen, L.H. Gas-phase studies of the retinal protonated Schiff base chromophore. Eur. Phys. J. D 75, 7 (2021). https://doi.org/10.1140/epjd/s10053-020-00024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00024-0

Keywords

  • Retinal chromophore
  • Action spectroscopy
  • Ion mobility spectrometry
  • Isomerization
  • Lifetime