Skip to main content

The interaction of M-BZ, M(\(\hbox {H}_{{2}}\hbox {O}\))-BZ, M-2BZ and M(\(\hbox {H}_{{2}}\hbox {O}\))-2BZ (\(\hbox {M} =\hbox {Li}^{+}\), \(\hbox {Na}^{+}\), \(\hbox {K}^{+}\), \(\hbox {Mg}^{2+}\), \(\hbox {Ca}^{2+}\)): EDA and ETS-NOCV approaches

Abstract

Cation–\(\uppi \) or cation–2\(\uppi \) interactions generally exist between one cation and one or two electron-rich \(\uppi \)-ring, which play an important role in many areas (such as benzene, borazine, aromatic rings, graphene and carbon nanotubes). Here, we report the interaction of M-BZ, M(\(\hbox {H}_{{2}}\hbox {O}\))-BZ, M-2BZ and M(\(\hbox {H}_{{2}}\hbox {O}\))-2BZ (\(\hbox {BZ} = \hbox {borazine}\), \(\hbox {M} =\hbox {Li}^{{+}}\), \(\hbox {Na}^{{+}}\), \(\hbox {K}^{{+}}\), \(\hbox {Mg}^{{2+}}\), \(\hbox {Ca}^{{2+}})\) at the B3LYP-D3/TZ2P levels of theory. We found that the interaction energy decreases as the radii of the cations increase. The total interaction energy was decomposed into the dispersion correction, Pauli repulsion, electrostatic interaction and orbital interaction by using energy decomposition analysis. In addition, the binding energy of M-BZ (2BZ) is similar to that of M-benzene (2benzene), indicating the special importance of M-BZ (2BZ) interaction in biological system. From the extended transition state scheme with the theory of natural orbitals for chemical valence, the first dominant deformation densities plot shown the flow of charge between the fragments, which mean the BZ is \(\uppi \) donation and cation (M(\(\hbox {H}_{{2}}\hbox {O}\))) is \(\upsigma \) or \(\uppi \) acceptor.

GraphicAbstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data is available from the corresponding author on reasonable request.]

References

  1. 1.

    D. Strmcnik, K. Kodama, D. van der Vliet, J. Greeley, V.R. Stamenkovic, N.M. Marković, Nat. Chem. 1, 466 (2009)

    Google Scholar 

  2. 2.

    S. Schulze, S. Köster, U. Geldmacher, A.C. Terwisscha van Scheltinga, W. Kühlbrandt, Nature 467, 233 (2010)

    ADS  Google Scholar 

  3. 3.

    R. Madueno, M.T. Räisänen, C. Silien, M. Buck, Nature 454, 618 (2008)

    ADS  Google Scholar 

  4. 4.

    A.R. Rocha, V.M. García-suárez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Nat. Mater. 4(4), 335 (2005)

    ADS  Google Scholar 

  5. 5.

    M.O. Sinnokrot, E.F. Valeev, C.D. Sherrill, J. Am. Chem. Soc. 124(36), 10887 (2002)

    Google Scholar 

  6. 6.

    J.C. Ma, D.A. Dougherty, Chem. Rev. 97(5), 1303 (1997)

    Google Scholar 

  7. 7.

    C.A. Hunter, J. Singh, J.M. Thornton, J. Mol. Biol. 218(4), 837 (1991)

    Google Scholar 

  8. 8.

    S.K. Burley, G.A. Petsko, Science 229(4708), 23 (1985)

    ADS  Google Scholar 

  9. 9.

    X. Zheng, C. Wu, J.W. Ponder, G.R. Marshall, J. Am. Chem. Soc. 134(38), 15970 (2012)

    Google Scholar 

  10. 10.

    D. Barbaras, K. Gademann, ChemBioChem 9(15), 2398 (2008)

    Google Scholar 

  11. 11.

    N.H. Andersen, K.A. Olsen, R.M. Fesinmeyer, X. Tan, F.M. Hudson, L.A. Eidenschink, S.R. Farazi, J. Am. Chem. Soc. 128(18), 6101 (2006)

    Google Scholar 

  12. 12.

    L. Ito, K. Shiraki, T. Matsuura, M. Okumura, K. Hasegawa, S. Baba, H. Yamaguchi, T. Kumasaka, Protein Eng. Des. Sel. 24(3), 269 (2010)

    Google Scholar 

  13. 13.

    D. Shukla, B.L. Trout, J. Phys. Chem. B 114(42), 13426 (2010)

    Google Scholar 

  14. 14.

    C.R.W. Guimarães, D.J. Kopecky, J. Mihalic, S. Shen, S. Jeffries, S.T. Thibault, X. Chen, N. Walker, M. Cardozo, J. Am. Chem. Soc. 131(50), 18139 (2009)

    Google Scholar 

  15. 15.

    X. Zou, W. Ma, I.A. Solov’yov, C. Chipot, K. Schulten, Nucleic Acids Res. 40(6), 2747 (2011)

    Google Scholar 

  16. 16.

    M. Gooding, S. Tudzarova, R.J. Worthington, S.R. Kingsbury, A.-S. Rebstock, H. Dube, M.I. Simone, C. Visintin, D. Lagos, J.-M.F. Quesada, H. Laman, C. Boshoff, G.H. Williams, K. Stoeber, D.L. Selwood, Chem. Biol. Drug Design 79(1), 9 (2012)

    Google Scholar 

  17. 17.

    A.S. Reddy, D. Vijay, G.M. Sastry, G.N. Sastry, J. Phys. Chem. B 110(6), 2479 (2006)

    Google Scholar 

  18. 18.

    A.S. Reddy, H. Zipse, G.N. Sastry, J. Phys. Chem. B 111(39), 11546 (2007)

    Google Scholar 

  19. 19.

    M. Duan, B. Song, G. Shi, H. Li, G. Ji, J. Hu, X. Chen, H. Fang, J. Am. Chem. Soc. 134(29), 12104 (2012)

    Google Scholar 

  20. 20.

    I. Soteras, M. Orozco, F.J. Luque, Phys. Chem. Chem. Phys. 10(19), 2616 (2008)

    Google Scholar 

  21. 21.

    J.P. Beck, J.M. Lisy, J. Phys. Chem. A 115(17), 4148 (2011)

    Google Scholar 

  22. 22.

    P.G. Campbell, A.J.V. Marwitz, S.-Y. Liu, Angew. Chem. Int. Ed. 51(25), 6074 (2012)

    Google Scholar 

  23. 23.

    X.-Y. Wang, J.-Y. Wang, J. Pei, Chem. Eur. J. 21(9), 3528 (2015)

    Google Scholar 

  24. 24.

    W. Luo, P.G. Campbell, L.N. Zakharov, S.-Y. Liu, J. Am. Chem. Soc. 133(48), 19326 (2011)

    Google Scholar 

  25. 25.

    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Nat. Acad. Sci. USA 102(30), 10451 (2005)

    ADS  Google Scholar 

  26. 26.

    D. Pacilé, J.C. Meyer, Ç.Ö. Girit, A. Zettl, Appl. Phys. Lett. 92(13), 133107 (2008)

    ADS  Google Scholar 

  27. 27.

    L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Lett. 10(8), 3209 (2010)

    ADS  Google Scholar 

  28. 28.

    Y. Shi, C. Hamsen, X. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H. Li, Z.-Y. Juang, M.S. Dresselhaus, L.-J. Li, J. Kong, Nano Lett. 10(10), 4134 (2010)

    ADS  Google Scholar 

  29. 29.

    A.B. Preobrajenski, A.S. Vinogradov, N. Mårtensson, Surf. Sci. 582(1), 21 (2005)

    ADS  Google Scholar 

  30. 30.

    L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Nat. Mater. 9, 430 (2010)

    ADS  Google Scholar 

  31. 31.

    L. Wang, X. Xu, L. Zhang, R. Qiao, M. Wu, Z. Wang, S. Zhang, J. Liang, Z. Zhang, Z. Zhang, W. Chen, X. Xie, J. Zong, Y. Shan, Y. Guo, M. Willinger, H. Wu, Q. Li, W. Wang, P. Gao, S. Wu, Y. Zhang, Y. Jiang, D. Yu, E. Wang, X. Bai, Z.-J. Wang, F. Ding, K. Liu, Nature 570(7759), 91 (2019)

    ADS  Google Scholar 

  32. 32.

    D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano 4(6), 2979 (2010)

    Google Scholar 

  33. 33.

    Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Science 317(5840), 932 (2007)

    ADS  Google Scholar 

  34. 34.

    K. Nejati, A. Hosseinian, L. Edjlali, E. Vessally, J. Mol. Liq. 229, 167 (2017)

    Google Scholar 

  35. 35.

    M. Wang, Y. Yang, Z. Yang, L. Gu, Q. Chen, Y. Yu, Adv. Sci. 4(4), 1600468 (2017)

    Google Scholar 

  36. 36.

    S.I. Yoon, D.-J. Seo, G. Kim, M. Kim, C.-Y. Jung, Y.-G. Yoon, S.H. Joo, T.-Y. Kim, H.S. Shin, ACS Nano 12(11), 10764 (2018)

    Google Scholar 

  37. 37.

    H. Guo, W. Zhang, N. Lu, Z. Zhuo, X.C. Zeng, X. Wu, J. Yang, J. Phys. Chem. C 119(12), 6912 (2015)

    Google Scholar 

  38. 38.

    L. Li, X. Yu, X. Yang, Y. Fang, X. Zhang, X. Xu, P. Jin, C. Tang, J. Mater. Chem. A 4(40), 15631 (2016)

    Google Scholar 

  39. 39.

    G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22(9), 931 (2001)

    Google Scholar 

  40. 40.

    E.J. Baerends, P. Ros, Chem. Phys. 2(1), 52 (1973)

    Google Scholar 

  41. 41.

    C. Fonseca Guerra, J.G. Snijders, G. te Velde, E.J. Baerends, Theoret. Chem. Acc. 99(6), 391 (1998)

    Google Scholar 

  42. 42.

    A.D. Becke, Phys. Rev. A 38(6), 3098 (1988)

    ADS  Google Scholar 

  43. 43.

    A.D. Becke, J. Chem. Phys. 98(7), 5648 (1993)

    ADS  Google Scholar 

  44. 44.

    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(15), 154104 (2010)

    ADS  Google Scholar 

  45. 45.

    K.G. Dyall, Theoret. Chem. Acc. 108(6), 335 (2002)

    Google Scholar 

  46. 46.

    J.G. Snijders, P. Vernooijs, E.J. Baerends, At. Data Nucl. Data Tables 26(6), 483 (1981)

    ADS  Google Scholar 

  47. 47.

    E. Van Lenthe, E.J. Baerends, J. Comput. Chem. 24(9), 1142 (2003)

    Google Scholar 

  48. 48.

    M.P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 5(4), 962 (2009)

    Google Scholar 

  49. 49.

    A. Michalak, M. Mitoraj, T. Ziegler, J. Phys. Chem. A 112(9), 1933 (2008)

    Google Scholar 

  50. 50.

    J.S. Rao, H. Zipse, G.N. Sastry, J. Phys. Chem. B 113(20), 7225 (2009)

    Google Scholar 

  51. 51.

    J.C. Amicangelo, P.B. Armentrout, J. Phys. Chem. A 104(48), 11420 (2000)

    Google Scholar 

  52. 52.

    A. Klamt, G. Schuurmann, J. Chem. Soc. Perkin Trans. 2(5), 799 (1993)

    Google Scholar 

  53. 53.

    E.C. Anota, D.C. Arriagada, A.B. Hernández, M. Castro, Appl. Surf. Sci. 400, 283 (2017)

    ADS  Google Scholar 

  54. 54.

    S. Feng, H. Zhang, C. Zhi, X. Gao, H. Nakanishi, Int. J. Nanomed. 13, 641 (2018)

    Google Scholar 

  55. 55.

    X. Li, C. Zhi, N. Hanagata, M. Yamaguchi, Y. Bando, D. Golberg, Chem. Commun. 49(66), 7337 (2013)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. to J.M. 21903057 and 91841301 to H.R.).

Author information

Affiliations

Authors

Contributions

Conceptualization, JM and HR; Data Curation, ZL, BY; Formal Analysis, ZL, RF and JM; Writing—Original Draft Preparation, ZL and BY; Writing—Review and Editing, JM, ZL, YH and HZ.

Corresponding authors

Correspondence to Haisheng Ren or Jianyi Ma.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yang, B., Fan, R. et al. The interaction of M-BZ, M(\(\hbox {H}_{{2}}\hbox {O}\))-BZ, M-2BZ and M(\(\hbox {H}_{{2}}\hbox {O}\))-2BZ (\(\hbox {M} =\hbox {Li}^{+}\), \(\hbox {Na}^{+}\), \(\hbox {K}^{+}\), \(\hbox {Mg}^{2+}\), \(\hbox {Ca}^{2+}\)): EDA and ETS-NOCV approaches. Eur. Phys. J. D 75, 11 (2021). https://doi.org/10.1140/epjd/s10053-020-00008-0

Download citation