Skip to main content

Penningionization processes involving cold Rydberg alkali metal atoms

Abstract

This paper investigates the Penning ionization (PI) processes in cold gas media of alkali atoms. The PI autoionization widths of atomic pairs show a drastic dependence (by orders of magnitude) on the orbital quantum numbers of Rydberg atoms involved in a long-range dipole-dipole interaction. The nontrivial dependence of the PI efficiency on the size of colliding particles was considered, with a particular accent to the applications in the research of cold matter created in the experiments with magneto-optical traps. We have analytically described the optimal, highly asymmetric configurations of atomic Rydberg pairs, which lead to an explosive intensification (by several orders of magnitude) of a free-electron escaping due to PI. The excited states of atoms in the optimal pairs turn out to have a strong difference in atomic shell sizes. The optimal pairs’ properties may be favorable for the generation of primary (seeding) charged particles when a cold Rydberg medium evolves into a cold plasma. Within the framework of the semiclassical approach, we have obtained universal analytical formulas containing two adjustable parameters and present here their values in tabulated form, which allows estimating the PI rate constants for various pairs of alkali metal atoms.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. M. Saffman, T.G. Walker, K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).

    ADS  Google Scholar 

  2. M. Saffman, J. Phys. B: At. Mol. Opt. Phys. 49, 202001 (2016).

    ADS  Article  Google Scholar 

  3. M. Lyon, S.L. Rolston, Rep. Prog. Phys. 80, 017001 (2017).

    ADS  Article  Google Scholar 

  4. P. Pillet, T.F. Gallagher, J. Phys. B: At., Mol. Opt. Phys. 49, 174003 (2016).

    ADS  Article  Google Scholar 

  5. P.J. Tanner, J. Han, E.S. Shuman, T.F. Gallagher, Phys. Rev. Lett. 100, 043002 (2008).

    ADS  Article  Google Scholar 

  6. W.G. Graham, W. Fritsch, Y. Hahn, J.A. Tanis, in Recombination of Atomic Ions Media (Springer Science & Business, 2012), p. 345.

  7. I.I. Beterov, D.B. Tretyakov, I.I. Ryabtsev, V.M. Entin, A. Ekers, N.N. Bezuglov, New J. Phys. 11, 013052 (2009).

    ADS  Article  Google Scholar 

  8. D.K. Efimov, K. Miculis, N.N. Bezuglov, A. Ekers, J. Phys. B: At., Mol. Opt. Phys. 49, 125302 (2016).

    ADS  Article  Google Scholar 

  9. A.N. Klyucharev, V. Vujnović, Phys. Rep. 185, 55 (1990).

    ADS  Article  Google Scholar 

  10. I.I. Beterov, D.B. Tretyakov, I.I. Ryabtsev, N.N. Bezuglov, K. Miculis, A. Ekers, A.N. Klucharev, J. Phys. B: At., Mol. Opt. Phys. 38, 4349 (2005).

    ADS  Article  Google Scholar 

  11. T. Amthor, J. Denskat, C. Giese, N.N. Bezuglov, A. Ekers, L. Cederbaum, M. Weidemüller, Eur. Phys. J. D. 53, 329 (2009).

    ADS  Article  Google Scholar 

  12. H. Yukap, J. Phys. B: At. Mol. Opt. Phys. 33, L655 (2000).

    Article  Google Scholar 

  13. A.A. Zalam, K. Miculis, M. Bruvelis, I.I. Beterov, N.N. Bezuglov, A.N. Klyucharev, E. Ekers, J. Phys. B: At., Mol. Opt. Phys. In progress (2020) .

  14. K.J. Katsuura, Chem. Phys. 43, 4149 (1965).

    ADS  Google Scholar 

  15. B.M. Smirnov, Sov. Phys. Usp. 24, 251 (1981).

    ADS  Article  Google Scholar 

  16. I.I. Sobelman, in Atomic Spectra and Radiative Transitions (Springer, Berlin, Heidelberg, 1992), p. 356.

  17. L.D. Landau, E.M. Lifshitz, in Quantum Mechanics (Pergamon, Oxford, 1977), p. 688.

  18. N.B. Delone, S.P. Goreslavsky, V.P. Krainov, J. Phys. B: At., Mol. Opt. Phys. 27, 4403 (1994).

    ADS  Article  Google Scholar 

  19. L.G. D’yachkov, P.M. Pankratov, J. Phys. B: At. Mol. Opt. Phys. 27, 461 (1994).

    ADS  Article  Google Scholar 

  20. N.N. Bezuglov, V.M. Borodin, A. Ekers, A.N. Klyucharev, Opt. Spectrosc. 93, 661 (2002).

    ADS  Article  Google Scholar 

  21. A.B. Migdal, in Qualitative Methods in Quantum Theory (CRC Press, Boca Raton, 2018), p. 464.

  22. N.N. Bezuglov, A.F. Molisch, A.N. Klucharev, F. Fuso, M. Allegrini, Phys. Rev. A 59, 4340 (1999).

    ADS  Article  Google Scholar 

  23. N.N. Bezuglov, V.M. Borodin, Opt. Spectrosc. 86, 467 (1999).

    ADS  Google Scholar 

  24. M. Aymar, O. Robaux, S. Wane, J. Phys. B: At., Mol. Opt. Phys. 17, 993 (1984).

    ADS  Article  Google Scholar 

  25. T.P. Hezel, C.E. Burkhardt, M. Ciocca, L.-W. He, J.J. Leventhal, Am. J. Physiol. 60, 329 (1992).

    ADS  Article  Google Scholar 

  26. G.L. Snitchler, D.K. Watson, J. Phys. B: At., Mol. Opt. Phys. 19, 259 (1986).

    ADS  Article  Google Scholar 

  27. I.I. Ryabtsev, I.I. Beterov, D.B. Tretyakov, V.M. Entin, E.A. Yakshina, Phys. Usp. 59, 196 (2016).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan S. Dimitrijević.

Additional information

Contribution to the Topical Issue “Advances in Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: from Biomolecules to Space Particles-SPIG 2020”, edited by Duško Borka, Dragana Ilić, Aleksandar Milosavljevic, Christophe Nicolas, Vladimir Srećković, Luka Č. Popović, Sylwia Ptasinska

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zalam, A.A., Dimitrijević, M.S., Srećković, V.A. et al. Penningionization processes involving cold Rydberg alkali metal atoms. Eur. Phys. J. D 74, 237 (2020). https://doi.org/10.1140/epjd/e2020-10507-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10507-7