Abstract
A two-dimensional model for muonic molecules with nuclei composed of proton-proton, deuterium-deuterium, and tritium-tritium is proposed and solved. The effective molecular potential is analytically calculated within a quasi-adiabatic approximation. The molecular wave-functions and energies involved in the elementary process of muon-catalyzed nuclear fusion described by a Schrödinger equation were numerically calculated. Predictions are compared with three-dimensional results, showing that the dimensionality of space and the choice of potential energy have a great influence on some parameters used to calculate the probability of nuclear fusion. In particular, a 109 times greater probability was found for the ttμ molecule compared to the prediction in three-dimensions. Finally, we conclude that, from the theoretical point of view, these results highlight the distinguished role of the ``centrifugal potential’’ in the 2D effective potential, showing that the geometrical nature of planar space plays a quite relevant role in s-state muonic molecules in two spatial dimensions.
Graphical abstract

This is a preview of subscription content, access via your institution.
References
C.M.G. Lattes, G.P.S. Occhialini, C.F. Powell, Nature 160, 486 (1947)
F.C. Frank, Nature 160, 525 (1947)
A.D. Sakharov, English translation in Muon Catalyzed Fusion 4, 235 (1989)
L.I. Ponomarev, Muon Catal. Fusion Contemp. Phys. 31, 219 (1990)
D.V. Balin, et al., Phys. Part. Nuclei 42, 185 (2011)
L.W. Alvarez, et al., Phys. Rev. 105, 1127 (1957)
A.V. Matveenko, L.I. Ponomarev, Zhurnal Ehksperimentalnoi i Teoreticheskoi Fiziki 63, 48 (1972)
L.I. Ponomarev, I.V. Puzynin, T.P. Puzynina, J. Comput. Phys. 13, 1 (1973)
K. Nagamine, L.I. Ponomarev, Nucl. Phys. A 721, C863 (2003)
S.E. Jones, Nature 321, 127 (1986)
J.D. Jackson, Phys. Rev. 106, 330 (1957)
V.P. Dzhelepov, et al., J. Exp. Theor. Phys. 23, 820 (1966)
E.A. Vesman, J. Exp. Theor. Phys. Lett. 5, 91 (1967)
W.H. Breunlich, et al., Phys. Rev. Lett. 58, 329 (1987)
V.M. Bystritsky, et al., Phys. Rev. A 71, 0327231 (2005)
M. Jandel, M. Danos, J. Rafelski, Phys. Rev. C 37, 403 (1988)
P. Ackerbauer, et al., Nucl. Phys. A 652, 311 (1999)
G.K. Paramonov, Chem. Phys. 338, 329 (2007)
L. Holmlid, Fusion Sci. Technol. 75, 208 (2019)
C. Petitjean, Nucl. Phys. A 543, 79 (1992)
Yu. V. Petrov, Nature 285, 466 (1980)
W.H. Breunlich, P. Kammel, J.S. Cohen, M. Leon, Annu. Rev. Nucl. Part. Sci. 39, 311 (1989)
W.H. Breunlich, Nucl. Phys. A 508, 3 (1990)
J. Rafelski, S.E. Jones, Cold Nuclear Fusion, Sci. Am. 257, 84 (1987)
A. Scrinzi, et al., Phys. Rev. A 47, 4691 (1993)
L.N. Bogdanova, et al., Nucl. Phys. A 454, 652 (1986)
J. Révai, A.L. Zubarev, L.Ya Higer, V.B. Belyaev, Phys. Rev. A 43, 4611 (1991)
S.E. Jones, et al., Phys. Rev. Lett. 56, 588 (1986)
I.C. da Cunha Lima, A. Ferreira da Silva, M. Fabbri, A. Troper, Mod. Phys. Lett. B 7, 949 (1993)
A.K. Geim, K.S. Novoselov, E. Lastauthor, Nature 6, 183 (2007)
A.K. Geim, Science 324, 1530 (2009)
Y. Zhang, et al., Nature 459, 820 (2009)
R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)
R.E. Prange, S.M. Girvin, The Quantum Hall Effect (Springer, 2012)
K. Eveker, et al., Am. J. Phys. 58, 1183 (1990)
P. Aggarwal, et al., Physica E 88, 26 (2017)
E. Sadeghi, M. Moradi Lm, Physica E 70, 141 (2015)
I. Richard Lapidus, Am. J. Phys. 49, 807 (1981)
F. Caruso, V. Oguri, F. Silveira, Physica E 105, 182 (2019)
F. Caruso, V. Oguri, F. Silveira, Braz. J. Phys. 49, 432 (2019)
F. Caruso, V. Oguri, F. Silveira, A. Troper, EPL 128, 22001 (2019)
B.V. Numerov, MNRAS 84, 592 (1924)
F. Caruso, V. Oguri, Rev. Bras. Ensino Fs. 36, 1 (2014)
D. Park, Introduction to the Quantum Theory (Dover, 2005)
I.C. da Cunha Lima, A. Ferreira da Silva, M. Fabbri, A. Troper, Phys. Rev. A 41, 4049 (1990)
W. Bian, X. Zhao, Y. Wang, Y. Wang, Chem. Phys. 242, 195 (1999)
M. Razavy, Quantum Theory of Tunneling (World Scientific, 2003)
S.S. Gershtein, L.I. Ponomarev, Phys. Lett. B 76, 80 (1977)
Y. Kino, et al., Phys. Rev. A 52, 870 (1995)
M.C. Fujiwara, et al., in Using Thin Film Targets for Muonic Atoms and Muon Catalyzed Fusion Studies (World scientific, 2001), pp. 291–298
G.M. Marshall, et al., Hyperfine Interact. 138, 203 (2001)
K. Nagamine, Introductory Muon Science (Cambridge University Press, 2003)
H. Bateman, A. Erdélyi, in Higher Transcendental Functions (McGraw-Hill, 1953), Vol. 1
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Caruso, F., Troper, A., Oguri, V. et al. A bidimensional quasi-adiabatic model for muon-catalyzed fusion in muonic hydrogen molecules. Eur. Phys. J. D 74, 240 (2020). https://doi.org/10.1140/epjd/e2020-10479-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjd/e2020-10479-6