Skip to main content

A bidimensional quasi-adiabatic model for muon-catalyzed fusion in muonic hydrogen molecules

Abstract

A two-dimensional model for muonic molecules with nuclei composed of proton-proton, deuterium-deuterium, and tritium-tritium is proposed and solved. The effective molecular potential is analytically calculated within a quasi-adiabatic approximation. The molecular wave-functions and energies involved in the elementary process of muon-catalyzed nuclear fusion described by a Schrödinger equation were numerically calculated. Predictions are compared with three-dimensional results, showing that the dimensionality of space and the choice of potential energy have a great influence on some parameters used to calculate the probability of nuclear fusion. In particular, a 109 times greater probability was found for the ttμ molecule compared to the prediction in three-dimensions. Finally, we conclude that, from the theoretical point of view, these results highlight the distinguished role of the ``centrifugal potential’’ in the 2D effective potential, showing that the geometrical nature of planar space plays a quite relevant role in s-state muonic molecules in two spatial dimensions.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. C.M.G. Lattes, G.P.S. Occhialini, C.F. Powell, Nature 160, 486 (1947)

    ADS  Article  Google Scholar 

  2. F.C. Frank, Nature 160, 525 (1947)

    ADS  Article  Google Scholar 

  3. A.D. Sakharov, English translation in Muon Catalyzed Fusion 4, 235 (1989)

    Google Scholar 

  4. L.I. Ponomarev, Muon Catal. Fusion Contemp. Phys. 31, 219 (1990)

    ADS  Google Scholar 

  5. D.V. Balin, et al., Phys. Part. Nuclei 42, 185 (2011)

    ADS  Article  Google Scholar 

  6. L.W. Alvarez, et al., Phys. Rev. 105, 1127 (1957)

    ADS  Article  Google Scholar 

  7. A.V. Matveenko, L.I. Ponomarev, Zhurnal Ehksperimentalnoi i Teoreticheskoi Fiziki 63, 48 (1972)

    Google Scholar 

  8. L.I. Ponomarev, I.V. Puzynin, T.P. Puzynina, J. Comput. Phys. 13, 1 (1973)

    ADS  Article  Google Scholar 

  9. K. Nagamine, L.I. Ponomarev, Nucl. Phys. A 721, C863 (2003)

    ADS  Article  Google Scholar 

  10. S.E. Jones, Nature 321, 127 (1986)

    ADS  Article  Google Scholar 

  11. J.D. Jackson, Phys. Rev. 106, 330 (1957)

    ADS  Article  Google Scholar 

  12. V.P. Dzhelepov, et al., J. Exp. Theor. Phys. 23, 820 (1966)

    ADS  Google Scholar 

  13. E.A. Vesman, J. Exp. Theor. Phys. Lett. 5, 91 (1967)

    Google Scholar 

  14. W.H. Breunlich, et al., Phys. Rev. Lett. 58, 329 (1987)

    ADS  Article  Google Scholar 

  15. V.M. Bystritsky, et al., Phys. Rev. A 71, 0327231 (2005)

    Article  Google Scholar 

  16. M. Jandel, M. Danos, J. Rafelski, Phys. Rev. C 37, 403 (1988)

    ADS  Article  Google Scholar 

  17. P. Ackerbauer, et al., Nucl. Phys. A 652, 311 (1999)

    ADS  Article  Google Scholar 

  18. G.K. Paramonov, Chem. Phys. 338, 329 (2007)

    Article  Google Scholar 

  19. L. Holmlid, Fusion Sci. Technol. 75, 208 (2019)

    Article  Google Scholar 

  20. C. Petitjean, Nucl. Phys. A 543, 79 (1992)

    ADS  Article  Google Scholar 

  21. Yu. V. Petrov, Nature 285, 466 (1980)

    ADS  Article  Google Scholar 

  22. W.H. Breunlich, P. Kammel, J.S. Cohen, M. Leon, Annu. Rev. Nucl. Part. Sci. 39, 311 (1989)

    ADS  Article  Google Scholar 

  23. W.H. Breunlich, Nucl. Phys. A 508, 3 (1990)

    ADS  Article  Google Scholar 

  24. J. Rafelski, S.E. Jones, Cold Nuclear Fusion, Sci. Am. 257, 84 (1987)

    ADS  Article  Google Scholar 

  25. A. Scrinzi, et al., Phys. Rev. A 47, 4691 (1993)

    ADS  Article  Google Scholar 

  26. L.N. Bogdanova, et al., Nucl. Phys. A 454, 652 (1986)

    ADS  Article  Google Scholar 

  27. J. Révai, A.L. Zubarev, L.Ya Higer, V.B. Belyaev, Phys. Rev. A 43, 4611 (1991)

    ADS  Article  Google Scholar 

  28. S.E. Jones, et al., Phys. Rev. Lett. 56, 588 (1986)

    ADS  Article  Google Scholar 

  29. I.C. da Cunha Lima, A. Ferreira da Silva, M. Fabbri, A. Troper, Mod. Phys. Lett. B 7, 949 (1993)

    ADS  Article  Google Scholar 

  30. A.K. Geim, K.S. Novoselov, E. Lastauthor, Nature 6, 183 (2007)

    Article  Google Scholar 

  31. A.K. Geim, Science 324, 1530 (2009)

    ADS  Article  Google Scholar 

  32. Y. Zhang, et al., Nature 459, 820 (2009)

    ADS  Article  Google Scholar 

  33. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

    ADS  Article  Google Scholar 

  34. R.E. Prange, S.M. Girvin, The Quantum Hall Effect (Springer, 2012)

  35. K. Eveker, et al., Am. J. Phys. 58, 1183 (1990)

    ADS  Article  Google Scholar 

  36. P. Aggarwal, et al., Physica E 88, 26 (2017)

    ADS  Article  Google Scholar 

  37. E. Sadeghi, M. Moradi Lm, Physica E 70, 141 (2015)

    ADS  Article  Google Scholar 

  38. I. Richard Lapidus, Am. J. Phys. 49, 807 (1981)

    Article  Google Scholar 

  39. F. Caruso, V. Oguri, F. Silveira, Physica E 105, 182 (2019)

    ADS  Article  Google Scholar 

  40. F. Caruso, V. Oguri, F. Silveira, Braz. J. Phys. 49, 432 (2019)

    ADS  Article  Google Scholar 

  41. F. Caruso, V. Oguri, F. Silveira, A. Troper, EPL 128, 22001 (2019)

    ADS  Article  Google Scholar 

  42. B.V. Numerov, MNRAS 84, 592 (1924)

    ADS  Article  Google Scholar 

  43. F. Caruso, V. Oguri, Rev. Bras. Ensino Fs. 36, 1 (2014)

    Google Scholar 

  44. D. Park, Introduction to the Quantum Theory (Dover, 2005)

  45. I.C. da Cunha Lima, A. Ferreira da Silva, M. Fabbri, A. Troper, Phys. Rev. A 41, 4049 (1990)

    ADS  Article  Google Scholar 

  46. W. Bian, X. Zhao, Y. Wang, Y. Wang, Chem. Phys. 242, 195 (1999)

    Article  Google Scholar 

  47. M. Razavy, Quantum Theory of Tunneling (World Scientific, 2003)

  48. S.S. Gershtein, L.I. Ponomarev, Phys. Lett. B 76, 80 (1977)

    ADS  Article  Google Scholar 

  49. Y. Kino, et al., Phys. Rev. A 52, 870 (1995)

    ADS  Article  Google Scholar 

  50. M.C. Fujiwara, et al., in Using Thin Film Targets for Muonic Atoms and Muon Catalyzed Fusion Studies (World scientific, 2001), pp. 291–298

  51. G.M. Marshall, et al., Hyperfine Interact. 138, 203 (2001)

    ADS  Article  Google Scholar 

  52. K. Nagamine, Introductory Muon Science (Cambridge University Press, 2003)

  53. H. Bateman, A. Erdélyi, in Higher Transcendental Functions (McGraw-Hill, 1953), Vol. 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Silveira.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caruso, F., Troper, A., Oguri, V. et al. A bidimensional quasi-adiabatic model for muon-catalyzed fusion in muonic hydrogen molecules. Eur. Phys. J. D 74, 240 (2020). https://doi.org/10.1140/epjd/e2020-10479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10479-6

Keywords

  • Molecular Physics and Chemical Physics