Skip to main content
Log in

Thermal conductivity of three-dimensional metallic carbon nanostructures (T6) with boron and nitrogen dopant

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the present work, the thermal conductivity of three-dimensional metallic carbon nanostructure (T6) is investigated by employing the molecular dynamics (MD) simulations. In doing so, two different models of T6 nanostructure, i.e. beam- and plate-like, are chosen to study the effects of size and geometry on the thermal conductivity of the system. It is observed that length increase in beam-like T6 leads to a rise in the thermal conductivity. Also, higher cross-section area in equal length causes lower thermal conductivity. In the case of plate-like T6, the width increases of the structure results in a sharp reduction of the thermal conductivity. Furthermore, increasing the height of the structure in the same length and width causes a decrease in the thermal conductivity. Moreover, a beam-like T6 model is doped with different weight percentages of boron and nitrogen to study the effects of doping on the thermal conductivity. It is demonstrated that doping boron and nitrogen atoms in T6 nanostructure decreases the thermal conductivity drastically.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  4. R. Ansarim, S. Ajori, Appl. Phys. A 20, 1399 (2015).

    Article  ADS  Google Scholar 

  5. R. Ansari, S. Ajori, B. Motevalli, Superlattice Microstruct. 51, 274 (2012).

    Article  ADS  Google Scholar 

  6. S. Ajori, S. Haghighi, R. Ansari, Eur. Phys. J. D 72, 1 (2018).

    Article  Google Scholar 

  7. S. Ajori, H. Parsapour, R. Ansari, S. Haghighi, Eur. Phys. J. D 74, 101 (2020).

    Article  ADS  Google Scholar 

  8. R. Ansari, S. Ajori, S. Malakpour, Eur. Phys. J. Appl. Phys. 74, 10401 (2016).

    Article  ADS  Google Scholar 

  9. R. Ansari, S. Ajori, Appl. Phys. A 120, 1399 (2015).

    Article  ADS  Google Scholar 

  10. S.H. Boroushak, S. Ajori, R. Ansari, Mater. Res. Exp. 6, 105096 (2019).

    Article  Google Scholar 

  11. H. Terrones, et al., Phys. Rev. Lett. 84, 1716 (2000).

    Article  ADS  Google Scholar 

  12. M. Kociak, et al., Phys. Rev. Lett. 86, 2416 (2001).

    Article  ADS  Google Scholar 

  13. S. Piscanec, M. Lazzeri, J. Robertson, A.C. Ferrari, F. Mauri, Phys. Rev. B 75, 035427 (2007).

    Article  ADS  Google Scholar 

  14. C.L. Bergeret, J. Cousseau, V. Fernandez, J.-Y. Mevellec, Phys. Chem. C 112, 16411 (2008).

    Article  Google Scholar 

  15. K.S.A. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S.V. Dubonos, A. Firsov, Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  16. V.H. Crespi, L.X. Benedict, M.L. Cohen, S.G. Louie, Phys. Rev. B 53, R13303 (1996).

    Article  ADS  Google Scholar 

  17. J. Lahiri, Y. Lin, P. Bozkurt, II Oleynik, M. Batzill, Nat. Nanotechnol 5, 326 (2010).

    Article  ADS  Google Scholar 

  18. M. Itoh, M. Kotani, H. Naito, T. Sunada, Y. Kawazoe, T. Adschiri, Phys. Rev. Lett. 102, 055703 (2009).

    Article  ADS  Google Scholar 

  19. Y. Yao, J.S. Tse, J. Sun, D.D. Klug, R. Martoňák, T. Iitaka, Phys. Rev. Lett. 102, 229601 (2009).

    Article  ADS  Google Scholar 

  20. Y. Liang, W. Zhang, L. Chen, Europhys. Lett. 87, 56003 (2009).

    Article  ADS  Google Scholar 

  21. X.L. Sheng, Q.-B. Yan, F. Ye, Q.-R. Zheng, G. Su, Phys. Rev. Lett. 106, 155703 (2011).

    Article  ADS  Google Scholar 

  22. L. Yang, H.Y. He, B.C. Pan, J. Chem. Phys. 138, 024502 (2013).

    Article  ADS  Google Scholar 

  23. J.Y. Jo, B.G. Kim, Phys. Rev. B 86, 075151 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Niu, X.Q. Chen, S. Wang, D. Li, W.L. Mao, Y. Li, Phys. Rev. Lett. 108, 135501 (2012).

    Article  ADS  Google Scholar 

  25. K. Srinivasu, S.K. Ghosh, J. Phys. Chem. C 116, 25015 (2012).

    Article  Google Scholar 

  26. S. Ajori, R. Ansari, M. Mirnezhad, Mater. Sci. Eng. A 513, 34 (2013).

    Article  Google Scholar 

  27. R. Ansari, S. Malakpour, S. Ajori, Superlattices Microstruct. 72, 230 (2014).

    Article  ADS  Google Scholar 

  28. S. Ajori, R. Ansari, F. Sadeghi, Eur. J. Mech. A. Solids 69, 45 (2018).

    Article  ADS  Google Scholar 

  29. M. Martinez-Canales, C.J. Pickard, R.J. Needs, Phys. Rev. Lett. 108, 045704 (2012).

    Article  ADS  Google Scholar 

  30. F. Li, H. Shu, C. Hu, Z. Shi, X. Liu, P. Liang, X. Chen, ACS Appl. Mater. Inter. 7, 27405 (2015).

    Article  Google Scholar 

  31. H. Shu, X. Chen, X. Tao, F. Ding, Acs Nano. 6, 3243 (2012).

    Article  Google Scholar 

  32. W. Luo, P. Zhang, X. Wang, Q. Li, Y. Dong, J. Hua, L. Zhou, L. Mai, J. Power Sources 304, 340 (2016).

    Article  ADS  Google Scholar 

  33. Y. Cheng, R. Melnik, Y. Kawazoe, B. Wen, Cryst. Growth Des. 16, 1360 (2016).

    Article  Google Scholar 

  34. X. Hu, T. Wang, L. Wang, S. Guo, S. Dong, Languir 23, 6352 (2007).

    Article  Google Scholar 

  35. S. Zhang, Q. Wang, X. Chen, P. Jena, Proc. Natl. Acad. Sci. U.S.A. 110, 18809 (2013).

    Article  ADS  Google Scholar 

  36. R. Ansari, S. Ajori, R. Hassani, Superlattices Microstruct. 97, 125 (2016).

    Article  ADS  Google Scholar 

  37. S. Ajori, R. Ansari, S. Haghighi, Comput. Mater. Sci. 128, 81 (2017).

    Article  Google Scholar 

  38. S. Haghighi, R. Ansari, S. Ajori, J. Mol. Graphics Modell. 92, 341 (2019).

    Article  Google Scholar 

  39. S.J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  40. J. Tersoff, Phys. Rev. B 6991, 37 (1988).

    Google Scholar 

  41. J. Tersoff, Phys. Rev. B 5566, 39 (1989).

    Google Scholar 

  42. C.L. Zhang, H.S. Shen, J. Phys. D: Appl. Phys. 41, 055404 (2008).

    Article  ADS  Google Scholar 

  43. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989).

  44. W.G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  ADS  Google Scholar 

  45. F. Muller-Plathe, J. Chem. Phys. 106, 6082 (1997).

    Article  ADS  Google Scholar 

  46. C. Si, X.D. Wang, Z. Fan, Z.H. Feng, B.Y. Cao, Int. J. Heat Mass Transfer 107, 450 (2017).

    Article  Google Scholar 

  47. S.W. Benson, J. Chem. Educ. 42, 502 (1965).

    Article  Google Scholar 

  48. T.L. Cottrell, The Strengths of Chemical Bonds (Butterworths Scientific Publications, London, 1958).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Ajori.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajori, S., Boroushak, S.H. & Ansari, R. Thermal conductivity of three-dimensional metallic carbon nanostructures (T6) with boron and nitrogen dopant. Eur. Phys. J. D 74, 238 (2020). https://doi.org/10.1140/epjd/e2020-10287-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10287-0

Keywords

Navigation