Skip to main content
Log in

Crystal-based intensive gamma-ray light sources

  • Topical Review
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We discuss design and practical realization of novel gamma-ray Crystal-based Light Sources (CLS) that can be constructed through exposure of oriented crystals (linear, bent, periodically bent) to beams of ultrarelativistic charged particles. In an exemplary case study, we estimate brilliance of radiation emitted in a Crystalline Undulator (CU) LS by available positron beams. Intensity of CU radiation in the photon energy range 100 − 101 MeV, which is inaccessible to conventional synchrotrons, undulators and XFELs, greatly exceeds that of laser-Compton scattering LSs and can be higher than predicted in the Gamma Factory proposal to CERN. Brilliance of CU-LSs can be boosted by up to 8 orders of magnitude through the process of superradiance by a pre-bunched beam. Construction of novel CLSs is a challenging task which constitutes a highly interdisciplinary field entangling a broad range of correlated activities. CLSs provide a low-cost alternative to conventional LSs and have enormous number of applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Seddon, J.A. Clarke, D.J. Dunning, C. Masciovecchio, C.J. Milne, F. Parmigiani, D. Rugg, J.C.H. Spence, N.R. Thompson, K. Ueda, S.M. Vinko, J.S. Wark, E. Wurth, Rep. Prog. Phys. 80, 115901 (2017)

    Article  ADS  Google Scholar 

  2. A. Doerr, Nature Meth. 13, 33 (2018)

    Article  Google Scholar 

  3. C.J. Milne, T. Schietinger, M. Aiba, A. Alarcon, J. Alex, et al., Appl. Scie. 7, 720 (2017)

    Article  Google Scholar 

  4. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, et al., Nat. Photonics 4, 641 (2010)

    Article  ADS  Google Scholar 

  5. B.W.J. McNeil, N.R. Thompson, Nat. Photonics 4, 814 (2010)

    Article  ADS  Google Scholar 

  6. C. Bostedt, S. Boutet, D.M. Fritz, Z. Huang, H.J. Lee, H.T. Lemke, A. Robert, W.F. Schlotter, J.J. Turner, G.J. Williams, Rev. Mod. Phys. 88, 015007 (2016)

    Article  ADS  Google Scholar 

  7. M. Yabashi, H. Tanaka, Nat. Photonics 11, 12 (2017)

    Article  ADS  Google Scholar 

  8. V. Ayvazyan, N. Baboi, I. Bohnet, R. Brinkmann, M. Castellano, et al., Europ. Phys. J. D 20, 149 (2002)

    Article  ADS  Google Scholar 

  9. M. Krasny, CERN Proc. 1, 249 (2018)

    Google Scholar 

  10. Xenon beams light path to gamma factory. CERN Courier (13 October 2017) https://cerncourier.com/xenon-beams-light-path-to-gamma-factory/

  11. K.A. Olive, et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014)

    Article  ADS  Google Scholar 

  12. A.V. Korol, A.V. Solov’yov, W. Greiner, J. Phys. G: Nucl. Part. Phys. 24, L45 (1998)

    Article  ADS  Google Scholar 

  13. A.V. Korol, A.V. Solov’yov, W. Greiner, Int. J. Mod. Phys. E 8, 49 (1999)

    Article  ADS  Google Scholar 

  14. A.V. Korol, A.V. Solov’yov, W. Greiner, Int. J. Mod. Phys. E 13, 897 (2004)

    Article  ADS  Google Scholar 

  15. W. Greiner, A.V. Korol, A. Kostyuk, A.V. Solovyov, Vorrichtung und Verfahren zur Erzeugung electromagnetischer Strahlung, Application for German patent, June 14, Ref.: 10 2010 023 632.2 (2010)

  16. A.V. Korol, A.V. Solov’yov, W. GreinerChanneling and Radiation in Periodically Bent Crystals, Second ed., (Springer-Verlag, Berlin, Heidelberg, 2014)

  17. G.B. Sushko, A.V. Korol, A.V. Solov’yov, St. Petersburg Polytechnical Uni. J.: Phys. Math. 1, 341 (2015)

    Article  Google Scholar 

  18. J. Lindhard, K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 34, 1 (1965)

    Google Scholar 

  19. L. Bandiera, E. Bagli, G. Germogli, V. Guidi, A. Mazzolari, H. Backe, W. Lauth, A. Berra, D. Lietti, M. Prest, D. De Salvador, E. Vallazza, V. Tikhomirov, Phys. Rev. Lett. 115, 025504 (2015)

    Article  ADS  Google Scholar 

  20. I.A. Solov’yov, A.V. Korol, A.V. Solov’yov, Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer (Springer International Publishing, Cham, Switzerland, 2017)

  21. U. Uggerhøj, Rev. Mod. Phys. 77, 1131 (2005)

    Article  ADS  Google Scholar 

  22. M.A. Kumakhov, Phys. Lett. 57A, 17 (1976)

    Article  Google Scholar 

  23. R.W. Terhune, R.H. Pantell, Appl. Phys. Lett. 30, 265 (1977)

    Article  ADS  Google Scholar 

  24. C.A. Brau, B.-K. Choi, J.D. Jarvis, J.W. Lewellen, P. Piot, Synchrotron Radiat. News 25, 20 (2012)

    Article  Google Scholar 

  25. W. Wagner, B. Azadegan, M. Sobiella, J. Steiner, K. Zeil, J. Pawelke, Nucl. Instrum. Meth. B 266, 327 (2008)

    Article  ADS  Google Scholar 

  26. M. Tanabashi, et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

    Article  ADS  Google Scholar 

  27. K. Akai, K. Furukawa, H. Koiso, ArXiv Preprint [arXiv:1809.01958] (2018)

  28. The CEPC Study Group, ArXiv Preprint [arXiv:809.00285] (2018)

  29. E.N. Tsyganov, Fermilab Preprints TM-682: Some aspects of the mechanism of a charged particle penetration through a monocrystal. & TM-684: Estimates of Cooling and bending processes for charged particle penetration through a monocrystal (Fermilab, Batavia, 1976)

  30. A.F. Elishev, N.A. Filatova, V.M. Golovatyuk, I.M. Ivanchenko, R.B. Kadyrov, et al., Phys. Lett. B 88, 387 (1979)

    Article  ADS  Google Scholar 

  31. V.M. Biryukov, Y.A. Chesnokov, V.I. Kotov, Crystal Channeling and its Application at High-Energy Accelerators (Springer Science & Business Media, 2013)

  32. W. Scandale, M. Fiorini, V. Guidi, A. Mazzolari, D. Vincenzi, et al., Phys. Lett. B 719, 70 (2013)

    Article  ADS  Google Scholar 

  33. W. Scandale, A. Carnera, G.D. Mea, D. De Salvador, R. Milan, et al., Phys. Rev. ST AB 11, 063501 (2008)

    ADS  Google Scholar 

  34. W. Scandale, A. Vomiero, S. Baricordi, P. Dalpiaz, M. Fiorini, et al., Phys. Rev. A 79, 012903 (2009)

    Article  ADS  Google Scholar 

  35. R.P. Fliller III, A. Drees, D. Gassner, L. Hammons, G. McIntyre, S. Peggs, D. Trbojevic, V. Biryukov, Y. Chesnokov, V. Terekhov, Phys. Rev. ST AB 9, 013501 (2006)

    ADS  Google Scholar 

  36. A. Mazzolari, E. Bagli, L. Bandiera, V. Guidi, H. Backe, W. Lauth, V. Tikhomirov, A. Berra, D. Lietti, M. Prest, E. Vallazza, D. De Salvador, Phys. Rev. Lett. 112, 135503 (2014)

    Article  ADS  Google Scholar 

  37. H. Shen, Q. Zha, F.S. Zhang, G.B. Sushko, A.V. Korol, A.V. Solov’yov, Nucl. Instrum. Meth. B 424, 26 (2018)

    Article  ADS  Google Scholar 

  38. A. Kostyuk, Phys. Rev. Lett. 110, 115503 (2013)

    Article  ADS  Google Scholar 

  39. T.N. Wistisen, K.K. Andersen, S. Yilmaz, R. Mikkelsen, J.L. Hansen, U.I. Uggerhøj, W. Lauth, H. Backe, Phys. Rev. Lett. 112, 254801 (2014)

    Article  ADS  Google Scholar 

  40. U.I. Uggerhoj, T.N. Wistisen, J.L. Hansen, W. Lauth, P. Klag, Eur. J. Phys. D 71, 124 (2017)

    Article  ADS  Google Scholar 

  41. A.V. Korol, V.G. Bezchastnov, G.B. Sushko, A.V. Solov’yov, Nucl. Instrum. Meth. B 387, 41 (2016)

    Article  ADS  Google Scholar 

  42. U.I. Uggerhøj, T.N. Wistisen, Nucl. Instrum Meth. B 355, 35 (2015)

    Article  ADS  Google Scholar 

  43. V.G. Bezchastnov, A.V. Korol, A.V. Solov’yov, J. Phys. B 47, 195401 (2014)

    Article  ADS  Google Scholar 

  44. H. Backe, D. Krambrich, W. Lauth, B. Buonomo, S.B. Dabagov, G. Mazzitelli, L. Quintieri, J.L. Hansen, U.K.I. Uggerhøj, B. Azadegan, A. Dizdar, W. Wagner, Nuovo Cimento C 34, 175 (2011)

    Google Scholar 

  45. V.T. Baranov, S. Bellucci, V.M. Biryukov, G.I. Britvich, V.N. Chepegin, et al., Nucl. Instrum. Meth. B 252, 32 (2006)

    Article  ADS  Google Scholar 

  46. M. Tabrizi, A.V. Korol, A.V. Solov’yov, W. Greiner, Phys. Rev. Lett. 98, 164801 (2007)

    Article  ADS  Google Scholar 

  47. H. Backe, D. Krambrich, W. Lauth, J.L. Hansen, U.K.I. Uggerhøj, Nuovo Cimento C 34, 157 (2011)

    Google Scholar 

  48. H. Backe, D. Krambrich, W. Lauth, K.K. Andersen, J.L. Hansen, U.K. Uggerhøj, Nucl. Instum. Meth. B 309, 44 (2013)

    Article  Google Scholar 

  49. A.V. Korol, A.V. Solov’yov, W. Greiner, Int. J. Mod. Phys. E 9, 77 (2000)

    Article  ADS  Google Scholar 

  50. S. Bellucci, S. Bini, V.M. Biryukov, Y.A. Chesnokov, et al., Phys. Rev. Lett. 90, 034801 (2003)

    Article  ADS  Google Scholar 

  51. P. Balling, J. Esberg, K. Kirsebom, D.Q.S. Le, U.I. Uggerhøj, S.H. Connell, J. Härtwig, F. Masiello, A. Rommeveaux, Nucl. Instrum Meth. B 267, 2952 (2009)

    Article  ADS  Google Scholar 

  52. V. Guidi, A. Antonioni, S. Baricordi, F. Logallo, C. Malagù, E. Milan, A. Ronzoni, M. Stefancich, G. Martinelli, A. Vomiero, Nucl. Instrum. Meth. B 234, 40 (2005)

    Article  ADS  Google Scholar 

  53. E. Bagli, L. Bandiera, V. Bellucci, A. Berra, R. Camattari, D. De Salvador, G. Germogli, V. Guidi, L. Lanzoni, D. Lietti, A. Mazzolari, M. Prest, V.V. Tikhomirov, E. Valla, Eur. Phys. J. C 74, 3114 (2014)

    Article  Google Scholar 

  54. V. Guidi, A. Mazzolari, G. Martinelli, A. Tralli, Appl. Phys. Lett. 90, 114107 (2007)

    Article  ADS  Google Scholar 

  55. V. Guidi, L. Lanzoni, A. Mazzolari, Thin Solid Films 520, 1074 (2011)

    Article  ADS  Google Scholar 

  56. V. Bellucci, R. Camattari, V. Guidi, A. Mazzolari, G. Paterno, G. Mattei, C. Scian, L. Lanzoni, Appl. Phys. Lett. 107, 064102 (2015)

    Article  ADS  Google Scholar 

  57. R. Camattari, G. Paternò, M. Romagnoni, V. Bellucci, A. Mazzolari, V. Guidi, J. Appl. Cryst. 50, 145 (2017)

    Article  Google Scholar 

  58. F. Cristiano, M. Shayesteh, R. Duffy, K. Huet, F. Mazzamuto, Y. Qiu, M. Quillec, H.H. Henrichsen, P.F. Nielsen, D.H. Petersen, A. La Magna, G. Caruso, S. Boninelli, Mat. Scie. in Semicond. Process. 42, 188 (2016)

    Article  Google Scholar 

  59. S.A. Bogacz, J.B. Ketterson, J. Appl. Phys. 60, 177 (1986)

    Article  ADS  Google Scholar 

  60. U. Mikkelsen, E. Uggerhøj, Nucl. Instum. Meth. B 160, 435 (2000)

    Article  ADS  Google Scholar 

  61. H. Backe, D. Krambrich, W. Lauth, K.K. Andersen, J.L. Hansen, U.I. Uggerhøj, Nucl. Instum. Meth. B 309, 37 (2013)

    Article  Google Scholar 

  62. T.N. Tran Thi, J. Morse, D. Caliste, B. Fernandez, D. Eon, J. Härtwig, C. Barbay, C. Mer-Calfati, N. Tranchant, J.C. Arnault, T.A. Lafford, J. Baruchel, J. Appl. Cryst. 50, 561 (2017)

    Article  Google Scholar 

  63. B.G. de la Mata, A. Sanz-Hervás, M.G. Dowsett, M. Schwitters, D. Twitchen, Diamond Rel. Mat. 16, 809 (2007)

    Article  ADS  Google Scholar 

  64. V.G. Baryshevsky, I.Ya Dubovskaya, A.O. Grubich, Phys. Lett. 77A, 61 (1980)

    Article  ADS  Google Scholar 

  65. V.V. Kaplin, S.V. Plotnikov, S.A. Vorobev, Sov. Phys. – Tech. Phys. 25, 650 (1980)

    Google Scholar 

  66. H. Ikezi, Y.R. Lin-Liu, T. Ohkawa, Phys. Rev. B 30, 1567 (1984)

    Article  ADS  Google Scholar 

  67. A.R. Mkrtchyan, R.H. Gasparyan, R.G. Gabrielyan, A.G. Mkrtchyan, Phys. Lett. 126A, 528 (1988)

    Article  ADS  Google Scholar 

  68. G.V. Dedkov, Phys. Stat. Sol. (b) 184, 535 (1994)

    Article  ADS  Google Scholar 

  69. W. Wagner, B. Azadegan, H. Büttig, L.S. Grigoryan, A.R. Mkrtchyan, J. Pawelke, Nuovo Cimento C 34, 134 (2011)

    Google Scholar 

  70. E. Tzianaki, M. Bakarezos, G.B. Tsibidis, Y. Orphanos, P.A. Loukakos, C. Kosmidis, P. Patsalas, M. Tatarakis, N.A. Papadogiannis, Opt. Express 23, 17191 (2015)

    Article  ADS  Google Scholar 

  71. M. Bakarezos, E. Tzianaki, S. Petrakis, G. Tsibidis, P.A. Loukakos, V. Dimitriou, C. Kosmidis, M. Tatarakis, N.A. Papadogiannis, Ultrasonics 86, 14 (2018)

    Article  Google Scholar 

  72. L. Federici, G. Giordano, G. Matone, G. Pasquariello, P. Picozza, et al., Lett. Nuovo Cimento 27, 339 (1980)

    Article  Google Scholar 

  73. H. ur Rehman, J. Lee, Y. Kim, Ann. Nucl. Energy 105, 150 (2017)

    Article  Google Scholar 

  74. J.M. Krämer, A. Jochmann, M. Budde, M. Bussmann, J.P. Couperus, et al., Sci. Rep. 8, 139 (2018)

    Article  Google Scholar 

  75. P. Schmüser, M. Dohlus, J. Rossbach, Ultraviolet and Soft X-Ray Free-Electron Lasers (Springer, Berlin/Heidelberg, 2008)

  76. M. Altarelli, A. Salam, Europhysicsnews 35, 47 (2004)

    ADS  Google Scholar 

  77. P. Rullhusen, X. Artru, P. Dhez, Novel Radiation Sources Using Relativistic Electrons (World Scientific, Singapore, 1998)

  78. K.-J. Kim, Characteristics of synchrotron radiation, in X-ray Data Booklet (Lawrence Berkeley Laboratory, Berkley, 2009), pp. 2.1–2.16http://xdb.lbl.gov/xdb-new.pdf

  79. K.-J. Kim, Nucl. Instrum. Meth. A 246, 71 (1986)

    Article  ADS  Google Scholar 

  80. E.G. Bessonov, Sov. J. Quantum Electron. 16, 1056 (1986)

    Article  ADS  Google Scholar 

  81. A. Gover, A. Friedman, C. Emma, N. Sudar, P. Musumeci, C. Pellegrini, Rev. Mod. Phys. 91, 035003 (2019)

    Article  ADS  Google Scholar 

  82. A. Kostyuk, A.V. Korol, A.V. Solov’yov, W. Greiner, J. Phys. B: At. Mol. Opt. Phys. 43, 151001 (2010)

    Article  ADS  Google Scholar 

  83. I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comp. Chem. 33, 2412 (2012)

    Article  Google Scholar 

  84. K.W.D. Ledingham, P. McKenna, R.P. Singhal, Science 300, 1107 (2003)

    Article  ADS  Google Scholar 

  85. K.W.D. Ledingham, R.P. Singhal, P. McKenna, I. Spencer, Europhys. News 33, 120 (2002)

    Article  ADS  Google Scholar 

  86. B.M. Weon, J.H. Je, Y. Hwu, G. Margaritondo, Phys. Rev. Lett. 100, 217403 (2008)

    Article  ADS  Google Scholar 

  87. SLAC Site Office, Preliminary Conceptual Design Report for the FACET-II Project at SLAC National Accelerator Laboratory, Report SLAC-R-1067, (SLAC, 2015)

  88. K. Nakamura, et al. (Particle Data Group), J. Phys. G: Nucl. Part. Phys. 37, 075021 (2010)

    Article  ADS  Google Scholar 

  89. M. Banks, Italy cancels €1bn SuperB collider (Physics World, 2012), https://physicsworld.com/a/italy-cancels-1bn-superb-collider/

  90. A.V. Korol, A.V. Solov’yov, W. Greiner, Proc. of SPIE 5974, 45 (2005)

    ADS  Google Scholar 

  91. T.N. Wistisen, U.I. Uggerhøj, U. Wienands, T.W. Markiewicz, R.J. Noble, B.C. Benson, T. Smith, E. Bagli, L. Bandiera, G. Germogli, V. Guidi, A. Mazzolari, R. Holtzapple, S. Tucker, Phys. Rev. Acc. Beams 19, 071001 (2016)

    Article  ADS  Google Scholar 

  92. A. Kostyuk, A.V. Korol, A.V. Solov’yov, W. Greiner, Nucl. Instrum. Meth. B 269, 1482 (2011)

    Article  ADS  Google Scholar 

  93. A.I. Sytov, L. Bandiera, D. De Salvador, A. Mazzolari, E. Bagli, A. Berra, S. Carturan, C. Durighello, G. Germogli, V. Guidi, P. Klag, W. Lauth, G. Maggioni, M. Prest, M. Romagnoni, V.V. Tikhomirov, E. Vallazza, Eur. Phys. J. C 77, 901 (2017)

    Article  ADS  Google Scholar 

  94. J.H. Hubbel, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest (NISTIR 5632, 1995) http://www.nist.gov/pml/data/xraycoef/index.cfm

  95. H. Backe, W. Lauth, T.N. Tran Thi, J. Instrum. JINST) 13, C04022 (2018)

    Article  Google Scholar 

  96. U. Wienands, T.W. Markiewicz, J. Nelson, R.J. Noble, J.L. Turner, U.I. Uggerhøj, T.N. Wistisen, E. Bagli, L. Bandiera, G. Germogli, V. Guidi, A. Mazzolari, R. Holtzapple, M. Miller, Phys. Rev. Let. 114, 074801 (2015)

    Article  ADS  Google Scholar 

  97. G.B. Sushko, V.G. Bezchastnov, I.A. Solov’yov, A.V. Korol, W. Greiner, A.V. Solov’yov, J. Comp. Phys. 252, 404 (2013)

    Article  ADS  Google Scholar 

  98. M. Abramowitz, I.E. Stegun, Handbook of mathematical functions (Dover, New York, 1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Solov’yov.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korol, A.V., Solov’yov, A.V. Crystal-based intensive gamma-ray light sources. Eur. Phys. J. D 74, 201 (2020). https://doi.org/10.1140/epjd/e2020-10239-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10239-8

Keywords

Navigation