Probing quantum gravity effects with quantum mechanical oscillators

An Erratum to this article was published on 19 November 2020

This article has been updated

Abstract

Phenomenological models aiming to join gravity and quantum mechanics often predict effects that are potentially measurable in refined low-energy experiments. For instance, modified commutation relations between position and momentum, that account for a minimal scale length, yield a dynamics that can be codified in additional Hamiltonian terms. When applied to the paradigmatic case of a mechanical oscillator, such terms, at the lowest order in the deformation parameter, introduce a weak intrinsic nonlinearity and, consequently, deviations from the classical trajectory. This point of view has stimulated several experimental proposals and realizations, leading to meaningful upper limits to the deformation parameter. All such experiments are based on classical mechanical oscillators, i.e., excited from a thermal state. We remark indeed that decoherence, that plays a major role in distinguishing the classical from the quantum behavior of (macroscopic) systems, is not usually included in phenomenological quantum gravity models. However, it would not be surprising if peculiar features that are predicted by considering the joined roles of gravity and quantum physics should manifest themselves just on purely quantum objects. On the basis of this consideration, we propose experiments aiming to observe possible quantum gravity effects on macroscopic mechanical oscillators that are preliminary prepared in a high purity state, and we report on the status of their realization.

Graphical abstract

Change history

  • 19 November 2020

    The funding for the article is corrected to:

    Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE Agreement.

    The original article has been corrected.

References

  1. 1.

    G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, S. Sarkar, Nature 393, 763 (1998)

    ADS  Google Scholar 

  2. 2.

    U. Jacob, T. Piran, Nat. Phys. 7, 87 (2007)

    Google Scholar 

  3. 3.

    F. Tamburini, C. Cuofano, M. Della Valle, R. Gilmozzi, Astron. Astrophys. 533, A71 (2011)

    ADS  Google Scholar 

  4. 4.

    A.A. Abdo, Nature 462, 331 (2009)

    ADS  Google Scholar 

  5. 5.

    G. Calcagni, S. Kuroyanagi, S. Marsat, M. Sakellariadou, N. Tamanini, G. Tasinato, J. Cosmol. Astropart. Phys. 10, 012 (2019)

    ADS  Google Scholar 

  6. 6.

    A. Bassi, A. Grosshardt, H. Ulbricht, Class. Quantum Grav. 34, 193002 (2017)

    ADS  Google Scholar 

  7. 7.

    S. Weinberg, Phys. Rev. D 72, 043514 (2005)

    ADS  MathSciNet  Google Scholar 

  8. 8.

    T. Damour, A.M. Polyakov, Nucl. Phys. B 423, 532 (1994)

    ADS  Google Scholar 

  9. 9.

    M. Bleicher, S. Hofmann, S. Hossenfelder, H. Stöcker, Phys. Lett. B 548, 73 (2002)

    ADS  Google Scholar 

  10. 10.

    G. Amelino-Camelia, Nature 398, 216 (1999)

    ADS  Google Scholar 

  11. 11.

    D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 197, 81 (1987)

    ADS  Google Scholar 

  12. 12.

    D.J. Gross, P. Mende, Nucl. Phys. B 303, 407 (1988)

    ADS  Google Scholar 

  13. 13.

    L.G. Garay, Int. J. Mod. Phys. A 10, 145 (1995)

    ADS  Google Scholar 

  14. 14.

    M. Maggiore, Phys. Lett. B 304, 65 (1993)

    ADS  MathSciNet  Google Scholar 

  15. 15.

    F. Scardigli, Phys. Lett. B 452, 39 (1999)

    ADS  Google Scholar 

  16. 16.

    P. Jizba, H. Kleinert, F. Scardigli, Phys. Rev. D 81, 084030 (2010)

    ADS  Google Scholar 

  17. 17.

    A.F. Ali, S. Das, E.C. Vagenas, Phys. Rev. D 84, 044013 (2011)

    ADS  Google Scholar 

  18. 18.

    S. Hossenfelder, Living Rev. Relativ. 16, 2 (2013)

    ADS  Google Scholar 

  19. 19.

    S. Das, E.C. Vagenas, Phys. Rev. Lett. 101, 221301 (2008)

    ADS  Google Scholar 

  20. 20.

    F. Marin, et al., Nature Phys. 9, 71 (2013)

    ADS  Google Scholar 

  21. 21.

    F. Marin, et al., New J. Phys. 16, 085012 (2014)

    ADS  Google Scholar 

  22. 22.

    A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)

    ADS  MathSciNet  Google Scholar 

  23. 23.

    F. Scardigli, J. Phys.: Conf. Ser. 1275, 012004 (2019)

    Google Scholar 

  24. 24.

    L.N. Chang, D. Minic, N. Okamura, T. Takeuchi, Phys. Rev. D 65, 125027 (2002)

    ADS  MathSciNet  Google Scholar 

  25. 25.

    Z. Lewis, T. Takeuchi, Phys. Rev. D 84, 105029 (2011)

    ADS  Google Scholar 

  26. 26.

    C.L. Ching, W.K. Ng, Phys. Rev. D 88, 084009 (2013)

    ADS  Google Scholar 

  27. 27.

    P. Pedram, Int. J. Mod. Phys. D 22, 1350004 (2013)

    ADS  MathSciNet  Google Scholar 

  28. 28.

    K. Nozari, Phys. Lett. B 629, 41 (2005)

    ADS  MathSciNet  Google Scholar 

  29. 29.

    K. Nozari, T. Azizi, Gen. Relativ. Gravit 38, 325 (2006)

    ADS  Google Scholar 

  30. 30.

    P. Pedram, Phys. Rev. D 85, 024016 (2012)

    ADS  Google Scholar 

  31. 31.

    C. Quesne, V.M. Tkachuk, Phys. Rev. A 81, 012106 (2010)

    ADS  Google Scholar 

  32. 32.

    M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  33. 33.

    S.M. Meenehan, J.D. Cohen, G.S. MacCabe, F. Marsili, M.D. Shaw, O. Painter, Phys. Rev. X 5, 041002 (2015)

    Google Scholar 

  34. 34.

    R. Riedinger, et al., Nature 530, 313 (2016)

    ADS  Google Scholar 

  35. 35.

    R.W. Peterson, T.P. Purdy, N.S. Kampel, R.W. Andrews, P.L. Yu, K.W. Lehnert, C.A. Regal, Phys. Rev. Lett. 116, 063601 (2016)

    ADS  Google Scholar 

  36. 36.

    E.E. Wollman, et al., Science 349, 952 (2015)

    ADS  MathSciNet  Google Scholar 

  37. 37.

    J.M. Pirkkalainen, E. Damskagg, M. Brandt, F. Massel, M.A. Sillanpaa, Phys. Rev. Lett. 115, 243601 (2015)

    ADS  Google Scholar 

  38. 38.

    F. Lecocq, J.B. Clark, R.W. Simmonds, J. Aumentado, J.D. Teufel, Phys. Rev. X 5, 041037 (2015)

    Google Scholar 

  39. 39.

    C.U. Lei, et al., Phys. Rev. Lett. 117, 100801 (2016)

    ADS  Google Scholar 

  40. 40.

    A. Chowdhury, et al., Phys. Rev. Lett. 124, 023601 (2020)

    ADS  Google Scholar 

  41. 41.

    A.H. Safavi-Naeini, J. Chan, J.T. Hill, T.P. Mayer Alegre, A. Krause, O. Painter, Phys. Rev. Lett. 108, 033602 (2012)

    ADS  Google Scholar 

  42. 42.

    T.P. Purdy, P.L. Yu, N.S. Kampel, R.W. Peterson, K. Cicak, R.W. Simmonds, C.A. Regal, Phys. Rev. A 92, 031802(R) (2015)

    ADS  Google Scholar 

  43. 43.

    M. Underwood, et al., Phys. Rev. A 92, 061801(R) (2015)

    ADS  Google Scholar 

  44. 44.

    V. Sudhir, et al., Phys. Rev. X 7, 011001 (2017)

    Google Scholar 

  45. 45.

    I. Pikovski, M.R. Vanner, M. Aspelmeyer, M.S. Kim, C. Brukner, Nat. Phys. 8, 393 (2012)

    Google Scholar 

  46. 46.

    P. Bosso, S. Das, I. Pikovski, M.R. Vanner, Phys. Rev. A 96, 023849 (2017)

    ADS  Google Scholar 

  47. 47.

    S.P. Kumar, M.B. Plenio, Phys. Rev. A 97, 063855 (2018)

    ADS  Google Scholar 

  48. 48.

    M. Bawaj, et al., Nat. Commun. 6, 7503 (2015)

    ADS  Google Scholar 

  49. 49.

    P.A. Bushev, et al., Phys. Rev. D 100, 066020 (2019)

    ADS  Google Scholar 

  50. 50.

    A. Borrielli, et al., Microsyst. Technol. 20, 907 (2014)

    Google Scholar 

  51. 51.

    A. Borrielli, et al., Phys. Rev. B 94, 121403(R) (2016)

    ADS  Google Scholar 

  52. 52.

    E. Serra, et al., AIP Adv. 6, 065004 (2016)

    ADS  MathSciNet  Google Scholar 

  53. 53.

    E. Serra, et al., J. Microelectromech. Syst. 27, 1193 (2018)

    Google Scholar 

  54. 54.

    A. Pontin, et al., Phys. Rev. Lett. 120, 020503 (2018)

    ADS  Google Scholar 

  55. 55.

    A.M. Jayich, et al., New J. Phys. 10, 095008 (2008)

    ADS  Google Scholar 

  56. 56.

    A. Chowdhury, et al., Quantum Sci. Technol. 4, 024007 (2019)

    ADS  Google Scholar 

  57. 57.

    A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010)

    ADS  Google Scholar 

  58. 58.

    O. Arcizet, P.F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Nature 444, 71 (2006)

    ADS  Google Scholar 

  59. 59.

    T. Biswas, N. Okada, Nucl. Phys. B 898, 113 (2015)

    ADS  Google Scholar 

  60. 60.

    S.P. Kumar, M.B. Plenio, Nat. Commun. 11, 3900 (2020)

    ADS  Google Scholar 

Download references

Acknowledgments

Open Access funding provided by Università degli Studi di Firenze.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesco Marino.

Additional information

Contribution to the Topical Issue “Quantum Technologies for Gravitational Physics”, edited by Tanja Mehlstäubler, Yanbei Chen, Guglielmo M. Tino and Hsien-Chi Yeh.

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonaldi, M., Borrielli, A., Chowdhury, A. et al. Probing quantum gravity effects with quantum mechanical oscillators. Eur. Phys. J. D 74, 178 (2020). https://doi.org/10.1140/epjd/e2020-10184-6

Download citation