Skip to main content
Log in

Generating non-locality correlation via 2-photon resonant interaction of dissipative two-qubit system with coherent field

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we introduce analytically the TC-model of two qubits interacting with a coherent cavity field via 2-photon process under the intrinsic dissipation effect. The interaction between the coherent cavity field and the two qubits, which are initially in an uncorrelated state, leads to generate non-locality qubit-qubit correlations. These correlations are investigated by using trace-norm measurement-induced nonlocality and Bures distance entanglement. It is found that the sudden appearance and sudden disappearance of the qubit-qubit entanglement depend not only on the intrinsic noise but also on the initial coherence intensity. The generated non-locality correlations and their stationary values may be controlled by the physical parameters of the intrinsic noise and the initial coherent field state.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. van Enk, H.J. Kimble, H. Mabuchi, Quantum Inf. Process. 3, 75 (2004)

    Google Scholar 

  2. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    ADS  Google Scholar 

  3. C.H. Bennett, D.P. DiVincenzo, P.W. Shor, J.A. Smolin, B.M. Terhal, W.K. Wootters, Phys. Rev. Lett. 87, 077902 (2001)

    ADS  Google Scholar 

  4. K. Berrada, S. Abdelkhalek, H. Eleuch, Y. Hassouni, Quantum Inf. Process. 12, 69 (2013)

    ADS  MathSciNet  Google Scholar 

  5. A.B.A. Mohamed, H. Eleuch, Eur. Phys. J. D 69, 191 (2015)

    ADS  Google Scholar 

  6. A.B.A. Mohamed, Quantum Inf. Process. 12, 1141 (2013)

    ADS  MathSciNet  Google Scholar 

  7. F. Tacchino, A. Auffèves, M.F. Santos, D. Gerace, Phys. Rev. Lett. 120, 063604 (2018)

    ADS  Google Scholar 

  8. A.B.A. Mohamed, Quantum. Inf. Process. 17, 96 (2018)

    ADS  Google Scholar 

  9. A.B.A. Mohamed, H. Eleuch, J. Opt. Soc. Am. B 35, 47 (2018)

    ADS  Google Scholar 

  10. H. Eleuch, Eur. Phys. J. D 49, 391 (2008)

    ADS  Google Scholar 

  11. S. Luo, S. Fu, Phys. Rev. Lett. 106, 120401 (2011)

    ADS  Google Scholar 

  12. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    ADS  Google Scholar 

  13. L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)

    ADS  MathSciNet  Google Scholar 

  14. B. Dakic, V. Vedral, C. Brukner, Phys. Rev. Lett. 105, 190502 (2010)

    ADS  Google Scholar 

  15. A.B.A. Mohamed, A. Joshi, S.S. Hassan, J. Phys. A 33, 335301 (2014)

    Google Scholar 

  16. M. Piani, Phys. Rev. A 86, 034101 (2012)

    ADS  Google Scholar 

  17. M.L. Hu, X. Hu, J. Wang, Y. Peng, Y.R. Zhang, H. Fan, Phys. Rep. 762, 1 (2018)

    ADS  MathSciNet  Google Scholar 

  18. F.M. Paula, T.R. de Oliveira, M.S. Sarandy, Phys. Rev. A 87, 064101 (2013)

    ADS  Google Scholar 

  19. M.L. Hu, H. Fan, New J. Phys. 17, 033004 (2015)

    ADS  Google Scholar 

  20. T.R. Bromley, M. Cianciaruso, R. Lo Franco, G. Adesso, J. Phys. A: Math. Theor. 47, 405302 (2014)

    Google Scholar 

  21. F. Ciccarello, T. Tufarelli, V. Giovannetti, New J. Phys. 16, 013038 (2014)

    ADS  Google Scholar 

  22. A.B.A. Mohamed, A.H. Homid, M. Abdel-Aty, H. Eleuch, J. Opt. Soc. Am. B 36, 926 (2019)

    ADS  Google Scholar 

  23. A.B.A. Mohamed, N. Metwally, Quantum Inf. Process. 318, 79 (2019)

    ADS  Google Scholar 

  24. V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619 (1998)

    ADS  Google Scholar 

  25. A. Uhlmann, Rep. Math. Phys. 9, 273 (1976)

    ADS  Google Scholar 

  26. D. Bures, Trans. Am. Math. Soc. 135, 199 (1969)

    Google Scholar 

  27. K. Modi, T. Parerek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett. 104, 080501 (2010)

    ADS  MathSciNet  Google Scholar 

  28. A.S.F. Obada, H.A. Hessian, A.B.A. Mohamed, A.H. Homid, J. Opt. Soc. Am. B 30, 1178 (2013)

    ADS  Google Scholar 

  29. Q.A. Turchette, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. Lett. 81, 3631 (1998)

    ADS  Google Scholar 

  30. M. Tavis, F.W. Cummings, Phys. Rev. 170, 379 (1968)

    ADS  Google Scholar 

  31. M. Tavis, F.W. Cummings, Phys. Rev. 692, 188 (1969)

    Google Scholar 

  32. A. Neuzner, M. Körber, O. Morin, S. Ritter, G. Rempe, Nat. Photon. 10, 303 (2016)

    ADS  Google Scholar 

  33. G.W. Deng, D. Wei, S.X. Li, J.R. Johansson, W.C. Kong, H.O. Li, G. Cao, M. Xiao, G.C. Guo, F. Nori, H.W. Jiang, G.P. Guo, Nano. Lett. 15, 6620 (2015)

    ADS  Google Scholar 

  34. P.R. Eastham, P.B. Littlewood, Phys. Rev. B 64, 235101 (2011)

    ADS  Google Scholar 

  35. M. Brune, J.M. Raimond, S. Haroche, Phys. Rev. A 35, 154 (1987)

    ADS  Google Scholar 

  36. A.S.F. Obada, H.A. Hessian, A.B.A. Mohamed, Laser Phys. 18, 1111 (2008)

    ADS  Google Scholar 

  37. A.B.A. Mohamed, Phys. Lett. A 374, 4115 (2010)

    ADS  Google Scholar 

  38. G.J. Milburn, Phys. Rev. A 44, 5401 (1991)

    ADS  MathSciNet  Google Scholar 

  39. H. Eleuch, I. Rotter, Eur. Phys. J. D 69, 229 (2015)

    ADS  Google Scholar 

  40. H. Eleuch, I. Rotter, Eur. Phys. J. D 69, 230 (2015)

    ADS  Google Scholar 

  41. E.A. Sete, H. Eleuch, Phys. Rev. A 91, 032309 (2015)

    ADS  Google Scholar 

  42. H. Eleuch, Appl. Math. Inf. Sci. 3, 185 (2009)

    MathSciNet  Google Scholar 

  43. E.K. Bashkirov, M.S. Mastyugin, Opt. Commun. 313, 170 (2014)

    ADS  Google Scholar 

  44. A.S.F. Obada, A.B.A. Mohamed, Opt. Commun. 309, 236 (2013)

    ADS  Google Scholar 

  45. Y.Y. Liao, S.R. Jian, J.R. Lee, Eur. Phys. J. D 73, 47 (2019)

    ADS  Google Scholar 

  46. M. Qin, L. Wang, M. He, X. Wang, Physica A 540, 122944 (2020)

    MathSciNet  Google Scholar 

  47. B. Dakic, V. Vedral, C. Brukner, Phys. Rev. Lett. 105, 190502 (2010)

    ADS  Google Scholar 

  48. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    ADS  Google Scholar 

  49. A. Streltsov, H. Kampermann, D. Bruss, New J. Phys. 12, 123004 (2010)

    ADS  Google Scholar 

  50. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    ADS  Google Scholar 

  51. A.B.A. Mohamed, H.A. Hessian, A.S.F. Obada, Physica A 390, 519 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Baset A. Mohamed.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, AB.A., Hashem, M., Elkhateeb, M.M. et al. Generating non-locality correlation via 2-photon resonant interaction of dissipative two-qubit system with coherent field. Eur. Phys. J. D 74, 130 (2020). https://doi.org/10.1140/epjd/e2020-10115-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10115-7

Keywords

Navigation