Skip to main content
Log in

Effect of metallic nanowire encapsulation on the tensile behavior of single-walled carbon nanotubes: a molecular dynamics study

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The encapsulation of nanowires (NWs) into single-walled carbon nanotubes (SWCNTs) is of great significance due to the specific mechanical, electrical and magnetic properties of confined NWs as well as application of filled CNTs in nanoelectromechanical systems (NEMS). The tensile behavior of NWs encapsulated-SWCNTs (NWs@SWCNTs) is investigated herein using molecular dynamics (MD) simulations. The results illustrated that Young’s moduli of NWs@SWCNTs decrease as the length of nanotube increases. Moreover, pure SWCNTs show higher Young’s moduli as compared to NWs@SWCNTs. It is also found that NWs@SWCNTs possess higher ultimate forces than those of pure SWCNTs. In addition, at a given length, the ultimate forces of pure SWCNTs and NWs@SWCNTs increase by increasing the radii of nanotubes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, T. Ichihashi, Nature 363, 603 (1993)

    ADS  Google Scholar 

  2. R. Ansari, S. Ajori, S. Rouhi, Appl. Surf. Sci. 332, 640 (2015)

    ADS  Google Scholar 

  3. B. Zhu, Y.X. Wang, Z.Y. Pan, D. Cheng, M. Hou, Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 57, 219 (2010)

    Google Scholar 

  4. B.C. Satishkumar, A. Govindaraj, M. Nath, C.N. Rao, J. Mater. Chem. 10, 2115 (2000)

    Google Scholar 

  5. R. Ansari, S. Ajori, A. Ameri, Appl. Phys. A 121, 223 (2015)

    ADS  Google Scholar 

  6. M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nature 438, 44 (2005)

    ADS  Google Scholar 

  7. S. Ajori, A. Ameri, R. Ansari, J. Mol. Graphics Model. 89, 74 (2019)

    Google Scholar 

  8. R. Ansari, F. Sadeghi, S. Ajori, Mech. Res. Commun. 47, 18 (2013)

    Google Scholar 

  9. K. Jiang, L.S. Schadler, R.W. Siegel, X. Zhang, H. Zhang, M. Terrones, J. Mater. Chem. 14, 37 (2004)

    Google Scholar 

  10. S. Ajori, A. Ameri, R. Ansari, Mol. Simul. 45, 388 (2020)

    Google Scholar 

  11. R. Ansari, S. Ajori, F. Sadeghi, J. Phys. Chem. Solids 85, 264 (2015)

    ADS  Google Scholar 

  12. S. Ajori, R. Ansari, F. Sadeghi, Eur. J. Mech. A Solids 69, 45 (2018)

    ADS  Google Scholar 

  13. N. Demoncy, O. Stephan, N. Brun, C. Colliex, A. Loiseau, H. Pascard, Eur. Phys. J. B Condens. Matter Complex Syst. 4, 147 (1998)

    Google Scholar 

  14. R. Ansari, S. Malakpour, M. Faghihnasiri, S. Ajori, Superlattices Microstruct. 64, 220 (2013)

    ADS  Google Scholar 

  15. S. Ajori, H. Parsapour, R. Ansari, A. Ameri, Mater. Res. Exp. 6, 095070 (2019)

    Google Scholar 

  16. F. Pashmforoush, S. Ajori, H.R. Azimi, Mater. Chem. Phys. 247, 122871 (2020)

    Google Scholar 

  17. P.M. Ajayan, Nature 361, 333 (1993)

    ADS  Google Scholar 

  18. M.C. Schnitzler, M.M. Oliveira, D. Ugarte, A.J. Zarbin, Chem. Phys. Lett. 381, 541 (2003)

    ADS  Google Scholar 

  19. N. Demoncy, O. Stephan, N. Bran, C. Colliex, A. Loiseau, H. Pascard, Synth. Met. 103, 2380 (1999)

    Google Scholar 

  20. J. Bao, Q. Zhou, J. Hong, Z. Xu, Appl. Phys. Lett. 81, 4592 (2002)

    ADS  Google Scholar 

  21. J.I. Bao, C.H. Tie, Z.H. Xu, Z.H. Suo, Q.U. Zhou, J. Hong, Adv. Mater. 14, 1483 (2002)

    Google Scholar 

  22. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Google Scholar 

  23. S. Ajori, H. Parsapour, R. Ansari, Physica E 104, 327 (2018)

    ADS  Google Scholar 

  24. S. Ajori, S. Haghighi, R. Ansari, Eur. Phys. J. D 72, 24 (2018)

    ADS  Google Scholar 

  25. H. Parsapour, S. Ajori, R. Ansari, S. Haghighi, Diamond Relat. Mater. 92, 117 (2019)

    ADS  Google Scholar 

  26. S. Ajori, H. Parsapour, R. Ansari, Mater. Res. Exp. 6, 045056 (2019)

    Google Scholar 

  27. L. Kuipers, J.W. Frenken, Phys. Rev. Lett. 70, 3907 (1993)

    ADS  Google Scholar 

  28. O. Tomagnini, F. Ercolessi, E. Tosatti, Surf. Sci. 287, 1041 (1993)

    ADS  Google Scholar 

  29. Y. Xiao, B.E. Zhu, S.H. Guo, Y.X. Wang, Z.Y. Pan, Nucl. Instrum. Methods Phys. Res. Sect. B 267, 3067 (2009)

    ADS  Google Scholar 

  30. B.E. Zhu, Z.Y. Pan, M. Hou, D. Cheng, Y.X. Wang, Mol. Phys. 109, 527 (2011)

    ADS  Google Scholar 

  31. D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui, J. Sun, H. Li, Y. Lu, J. Am. Chem. Soc. 134, 14283 (2012)

    Google Scholar 

  32. L. Zhou, B.E. Zhu, Z.Y. Pan, Y.X. Wang, J. Zhu, Nanotechnology 18, 275709 (2007)

    ADS  Google Scholar 

  33. S. Arcidiacono, J.H. Walther, D. Poulikakos, D. Passerone, P. Koumoutsakos, Phys. Rev. Lett. 94, 105502 (2005)

    ADS  Google Scholar 

  34. N. Grobert, W.K. Hsu, Y.Q. Zhu, J.P. Hare, H.W. Kroto, D.R. Walton, M. Terrones, H. Terrones, P. Redlich, M. Rühle, R. Escudero, Appl. Phys. Lett. 75, 3363 (1999)

    ADS  Google Scholar 

  35. A. Leonhardt, M. Ritschel, R. Kozhuharova, A. Graff, T. Mühl, R. Huhle, I. Mönch, D. Elefant, C.M. Schneider, Diamond Relat. Mater. 12, 790 (2003)

    ADS  Google Scholar 

  36. L. Xu, W. Zhang, Y. Ding, Y. Peng, S. Zhang, W. Yu, Y. Qian, J. Phys. Chem. B 108, 10859 (2004)

    Google Scholar 

  37. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    ADS  Google Scholar 

  38. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986)

    ADS  Google Scholar 

  39. S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000)

    ADS  Google Scholar 

  40. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys. Condens. Matter 14, 783 (2002)

    ADS  Google Scholar 

  41. J.E. Lennard-Jones, Proc. R. Soc. London A 106, 441 (1924)

    ADS  Google Scholar 

  42. A. Arkundato, Z. Su’ud, M. Hasan, M. Celino, J. Phys. Conf. Ser. 622, 012009 (2015)

    Google Scholar 

  43. Y. Zheng, A. Zaoui, Solid State Ionics 203, 80 (2011)

    Google Scholar 

  44. J. Lv, M. Bai, W. Cui, X. Li, Nanoscale Res. Lett. 6, 200 (2011)

    ADS  Google Scholar 

  45. J. Cao, Y. Wang, J. Shi, J. Chai, K. Cai, Int. J. Mol. Sci. 19, 4085 (2018)

    Google Scholar 

  46. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    ADS  Google Scholar 

  47. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (New York, 1986)

  48. S. Ajori, S. Haghighi, R. Ansari, J. Mol. Model. 25, 318 (2019)

    Google Scholar 

  49. P. Sen, O. Gülseren, T. Yildirim, I.P. Batra, S. Ciraci, Phys. Rev. B 65, 235433 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahram Ajori or Reza Ansari.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajori, S., Parsapour, H., Ansari, R. et al. Effect of metallic nanowire encapsulation on the tensile behavior of single-walled carbon nanotubes: a molecular dynamics study. Eur. Phys. J. D 74, 101 (2020). https://doi.org/10.1140/epjd/e2020-10104-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10104-x

Keywords

Navigation