Skip to main content
Log in

Discharge propagation on a dielectric surface in a single-filament arrangement

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Discharge development and streamer propagation on a dielectric surface were investigated in nitrogen-oxygen gas mixtures at atmospheric pressure. A coaxial pin-to-pin arrangement was used to generate single surface discharges driven by positive unipolar square wave high voltages of between 7 and 9 kV at 4.3 kHz. The development of surface discharges was recorded by ICCD and streak cameras. The discharges developed on the surface using pin electrodes attached directly to the dielectric plate. The accumulation over several discharge events showed a propagation front evolving from the electrode tip, while images of single discharges showed a non-uniform and branched structure of discharge channels. The electrode polarity influenced the discharge expansion and propagation velocity. Positive polarity of the metallic electrode (rising slope of HV pulses) led to a cathode-directed streamer with higher propagation velocities (5 × 105 m/s) than for negative polarity (relative to surface charges; falling slope). The increase in the O2 content in N2 from 0.1 to 20 vol% resulted in a decrease in discharge duration and an increase in streamer velocities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003)

    Article  Google Scholar 

  2. K.H. Schoenbach, K. Becker, Eur. Phys. J. D 70, 22 (2016)

    Article  ADS  Google Scholar 

  3. E. Moreau, R. Sosa, G. Artana, J. Phys. D: Appl. Phys. 41, 115204 (2008)

    Article  ADS  Google Scholar 

  4. U. Kogelschatz, J. Phys.: Conf. Ser. 257, 012015 (2010)

    Google Scholar 

  5. Y. Zhao, Y. Xia, T. Xi, D. Zhu, Q. Zhang, Z. Qi, D. Liu, W. Wang, J. Phys. D: Appl. Phys. 53, 164005 (2020)

    Article  ADS  Google Scholar 

  6. S. Sato, K. Hensel, H. Hayashi, K. Takashima, A. Mizuno, J. Electrostat. 67, 77 (2009)

    Article  Google Scholar 

  7. C. Louste, G. Artana, E. Moreau, G. Touchard, J. Electrostat. 63, 615 (2005)

    Article  Google Scholar 

  8. T. Unfer, J.P. Boeuf, J. Phys. D: Appl. Phys. 42, 194017 (2009)

    Article  ADS  Google Scholar 

  9. J. Kriegseis, K. Barckmann, J. Frey, C. Tropea, S. Grundmann, Phys. Plasmas 21, 053511 (2014)

    Article  ADS  Google Scholar 

  10. R.E. Hanson, N.M. Houser, P. Lavoie, J. Appl. Phys. 115, 043301 (2014)

    Article  ADS  Google Scholar 

  11. Yu Akishev, G. Aponin, A. Balakirev, M. Grushin, V. Karalnik, A. Petryakov, N. Trushkin, J. Phys. D: Appl. Phys. 46, 464014 (2013)

    Article  ADS  Google Scholar 

  12. J.P. Boeuf, Y. Lagmich, T. Unfer, T. Callegari, L.C. Pitchford, J. Phys. D: Appl. Phys. 40, 652 (2007)

    Article  ADS  Google Scholar 

  13. T. Hoder, P. Synek, J. Rahel, R. Brandenburg, M. Cernak, Plasma Phys. Control. Fusion 59, 074001 (2017)

    Article  ADS  Google Scholar 

  14. AYu Starikovskii, A.A. Nikipelov, M.M. Nudnova, D.V. Roupassov, Plasma Sources Sci. Technol. 18, 034015 (2009)

    Article  ADS  Google Scholar 

  15. M.M. Nudnova, N.L. Aleksandrov, AYu Starikovskii, Plasma Phys. Rep. 36, 94 (2010)

    Article  ADS  Google Scholar 

  16. S.A. Stepanyan, AYu Starikovskiy, N.A. Popov, S.M. Starikovskaia, Plasma Sources Sci. Technol. 23, 045003 (2014)

    Article  ADS  Google Scholar 

  17. Y. Zhu, S. Shcherbanev, B. Baron, S.M. Starikovskaia, Plasma Sources Sci. Technol. 26, 125004 (2017)

    Article  ADS  Google Scholar 

  18. S.A. Shcherbanev, Ch Ding, S.M. Starikovskaia, N.A. Popov, Plasma Sources Sci. Technol. 28, 065013 (2019)

    Article  ADS  Google Scholar 

  19. V.R. Soloviev, V.M. Krivtsov, Plasma Phys. Rep. 40, 65 (2014)

    Article  ADS  Google Scholar 

  20. N.Y. Babaeva, D.V. Tereshonok, G.V. Naidis, Plasma Sources Sci. Technol. 25, 044008 (2016)

    Article  ADS  Google Scholar 

  21. V.R. Soloviev, V.M. Krivtsov, Plasma Sources Sci. Technol. 27, 114001 (2018)

    Article  ADS  Google Scholar 

  22. V. Gibalov, G. Pietsch, J. Phys. D: Appl. Phys. 33, 2618 (2000)

    Article  ADS  Google Scholar 

  23. T. Hoder, M. Sira, K.V. Kozlov, H.E. Wagner, J. Phys. D: Appl. Phys. 41, 035212 (2008)

    Article  ADS  Google Scholar 

  24. H.H. Kim, Y. Teramot, A. Ogata, W.S. Kang, M. Hur, Y.H. Song, J. Phys. D: Appl. Phys. 51. 244006 (2018)

    Article  ADS  Google Scholar 

  25. H. Okubo, M. Kanegami, M. Hikita, Y. Kito, IEEE Trans. Dielectr. Electr. Insul. 1, 294 (1994)

    Article  Google Scholar 

  26. R. Sasamoto, T. Matsumoto, Y. Izawa, K. Nishijima, I.E.E.E. Trans, Plasma Sci. 43, 4210 (2015)

    Article  Google Scholar 

  27. Y. Murooka, S. Koyama, J. Appl. Phys. 50, 6200 (1979)

    Article  ADS  Google Scholar 

  28. M. Tanaka, Y. Murooka, K. Hidaka, J. Appl. Phys. 61, 4471 (1987)

    Article  ADS  Google Scholar 

  29. Y. Zhu, T. Takada, K. Sakai, Tu J. Phys. D: Appl. Phys. 29, 2892 (1996)

    Article  ADS  Google Scholar 

  30. A. Kumada, S. Okabe, K. Hidaka, J. Phys. D: Appl. Phys. 42, 095209 (2009)

    Article  ADS  Google Scholar 

  31. D. Tanaka, S. Matsuoka, A. Kumada, K. Hidaka, J. Phys. D: Appl. Phys. 42, 075204 (2009)

    Article  ADS  Google Scholar 

  32. J. Deng, S. Matsuoka, A. Kumada, K. Hidaka, J. Phys. D: Appl. Phys. 43, 495203 (2010)

    Article  Google Scholar 

  33. T. Hoder, R. Brandenburg, R. Basner, K.D. Weltmann, K.V. Kozlov, H.E. Wagner, J. Phys. D: Appl. Phys. 43, 124009 (2010)

    Article  ADS  Google Scholar 

  34. H. Grosch, T. Hoder, K.D. Weltmann, R. Brandenburg, Eur. Phys. J. D 60, 547 (2010)

    Article  ADS  Google Scholar 

  35. H. Höft, M. Kettlitz, M.M. Becker, T. Hoder, D. Loffhagen, R. Brandenburg, K.D. Weltmann, J. Phys. D: Appl. Phys. 47, 465206 (2014)

    Article  ADS  Google Scholar 

  36. G.A. Mesyats, IEEE Trans. Dielectr. Electr. Insul. 2, 272 (1995)

    Article  Google Scholar 

  37. N.M. Jordan, Y.Y. Lau, D.M. French, R.M. Gilgenbach, P. Pengvanich, J. Appl. Phys. 102, 033301 (2007)

    Article  ADS  Google Scholar 

  38. H. Höft, M. Kettlitz, T. Hoder, K.D. Weltmann, R. Brandenburg, J. Phys. D: Appl. Phys. 46, 095202 (2013)

    Article  ADS  Google Scholar 

  39. A. Bourdon, Z. Bonaventura, S. Celestin, Plasma Sources Sci. Technol. 19, 034012 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Kettlitz.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kettlitz, M., Klink, R., Höft, H. et al. Discharge propagation on a dielectric surface in a single-filament arrangement. Eur. Phys. J. D 74, 110 (2020). https://doi.org/10.1140/epjd/e2020-10082-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10082-y

Keywords

Navigation