Skip to main content

A network of superconducting gravimeters as a detector of matter with feeble nongravitational coupling


Hidden matter that interacts only gravitationally would oscillate at characteristic frequencies when trapped inside of Earth. For small oscillations near the center of the Earth, these frequencies are around 300 μHz. Additionally, signatures at higher harmonics would appear because of the non-uniformity of Earth’s density. In this work, we use data from a global network of gravimeters of the International Geodynamics and Earth Tide Service (IGETS) to look for these hypothetical trapped objects. We find no evidence for such objects with masses on the order of 1014 kg or greater with an oscillation amplitude of 0.1 re. It may be possible to improve the sensitivity of the search by several orders of magnitude via better understanding of the terrestrial noise sources and more advanced data analysis.

Graphical abstract


  1. 1.

    G. Bertone, D. Hooper, Rev. Mod. Phys. 90, 045002 (2018).

    ADS  Article  Google Scholar 

  2. 2.

    A.M. Dziewonski, D.L. Anderson, Phys. Earth Planet. Inter. 25, 297 (1981).

    ADS  Article  Google Scholar 

  3. 3.

    J. Hinderer, D. Crossley, R.J. Warburton, 3.04 – superconducting gravimetry, in Treatise on Geophysics, 2nd ed., edited by G. Schubert (Elsevier, Oxford, 2015), pp. 59–115.

  4. 4.

    The web page of international geodynamics and earth tide service,

  5. 5.

    C. Voigt, C. Förste, H. Wziontek, D. Crossley, B. Meurers, V. Pálinkáš, J. Hinderer, J.-P. Boy, J.-P. Barriot, H. Sun, Report on the Data Base of the International Geodynamics and Earth Tide Service (IGETS), Deutsches GeoForschungsZentrum GFZ, 2016.

  6. 6.

    S. Rosat, J. Hinderer, D. Crossley, L. Rivera, Phys. Earth Planet. Inter. 140, 183 (2003).

    ADS  Article  Google Scholar 

  7. 7.

    H. Ding, B.F. Chao, J. Geophys. Res.: Solid Earth 120, 7261 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    A.A. Geraci, A. Derevianko, Phys. Rev. Lett. 117, 261301 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    A. Banerjee, D. Budker, J. Eby, H. Kim, G. Perez, Commun. Phys. 3, 1 (2020).

    Article  Google Scholar 

  10. 10.

    D.F.J. Kimball, D. Budker, J. Eby, M. Pospelov, S. Pustelny, T. Scholtes, Y.V. Stadnik, A. Weis, A. Wickenbrock, Phys. Rev. D 97, 043002 (2018).

    ADS  Article  Google Scholar 

  11. 11.

    R.L. McNally, T. Zelevinsky, Eur. Phys. J. D 74, 61 (2020).

    ADS  Article  Google Scholar 

  12. 12.

    C.-G. Shao, Y.-F. Chen, R. Sun, L.-S. Cao, M.-K. Zhou, Z.-K. Hu, C. Yu, H. Müller, Phys. Rev. D 97, 024019 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    C.J. Horowitz, R. Widmer-Schnidrig, Phys. Rev. Lett. 124, 051102 (2020).

    ADS  Article  Google Scholar 

  14. 14.

    K. Lawson, X. Liang, A. Mead, M.S.R. Siddiqui, L. Van Waerbeke, A. Zhitnitsky, Phys. Rev. D 100, 043531 (2019).

    ADS  Article  Google Scholar 

  15. 15.

    A.R. Zhitnitsky, J. Cosmol. Astropart. Phys. 2003, 010 (2003).

    Article  Google Scholar 

  16. 16.

    E. Roche, Acad. Sci. Montpellier 1, 1847 (1850).

    Google Scholar 

  17. 17.

    D. Wittman, N. Golovich, W.A. Dawson, Astrophys. J. 869, 104 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    D. Crossley, J. Hinderer, G. Casula, O. Frnacis, H.-T. Hsu, Y. Imanishi, G. Jentzsch, J. Kääriänen, J. Merriam, B. Meurers, J. Neumeyer, Eos Trans. Am. Geophys. Union 80, 121 (1999).

    ADS  Article  Google Scholar 

  19. 19.

    J.-P. Boy, Description of the level 2 and level 3 IGETS data produced by, EOST (2019)

  20. 20.

    S. Rosat, J. Hinderer, Sci. Rep. 8, 15324 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    M. Mikolaj, M. Reich, A. Güntner, J. Geophys. Res.: Solid Earth 124, 2153 (2019).

    ADS  Article  Google Scholar 

  22. 22.

    S. Rosat, S. Watada, T. Sato, Earth Planets Space 59, 307 (2007).

    ADS  Article  Google Scholar 

  23. 23.

    T.G. Masters, R. Widmer, Free oscillations: frequencies and attenuations, in: Global Earth Physics: a handbook of physical constants (1995), Vol. 1, 104.

    ADS  Google Scholar 

  24. 24.

    LIGO Scientific Collaboration, Virgo Collaboration, et al., Class. Quantum Grav. 37, 055002 (2020).

    ADS  Article  Google Scholar 

  25. 25.

    S. Afach, D. Budker, G. DeCamp, V. Dumont, Z.D. Grujić, H. Guo, D.F. Jackson Kimball, T.W. Kornack, V. Lebedev, W. Li, H. Masia-Roig, S. Nix, M. Padniuk, C.A. Palm, C. Pankow, A. Penaflor, X. Peng, S. Pustelny, T. Scholtes, J.A. Smiga, J.E. Stalnaker, A. Weis, A. Wickenbrock, D. Wurm, Phys. Dark Univ. 22, 162 (2018) .

    Article  Google Scholar 

  26. 26.

    A. Derevianko, Phys. Rev. A 97, 042506 (2018).

    ADS  Article  Google Scholar 

Download references


Open access funding provided by Projekt DEAL.

Author information



Corresponding author

Correspondence to Nataniel L. Figueroa.

Additional information

Contribution to the Topical Issue “Quantum Technologies for Gravitational Physics”, edited by Tanja Mehlstäubler, Yanbei Chen, Guglielmo M. Tino and Hsien-Chi Yeh.

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Lawson, M.M., Budker, D. et al. A network of superconducting gravimeters as a detector of matter with feeble nongravitational coupling. Eur. Phys. J. D 74, 115 (2020).

Download citation