Skip to main content
Log in

Enhancement of transmission in 1D thermal tunable metallic photonic crystal filter with exponential gradation thickness

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Using the transfer matrix method, the transmission of 1D thermal tunable metallic photonic crystal (PC) filter with symmetry exponential gradation of thickness has been examined in this article. For the purpose of making this structure, three different materials silicon, silica, and silver have been used. The refractive index of silver is considered as a function of temperature and wavelength. The dependence of the silicon refractive index on the wavelength is also considered in calculations. The effect of the variation of temperature and incident angle on the transmission peaks has been investigated. By increasing the temperature, the transmission peaks in the position of defect modes move toward the larger wavelength at a given incident angle. When the incident angle is increased, however, they shift toward the shorter wavelength in both polarizations. The height of transmission peaks decreases linearly by increasing the temperature. Results are compared with those obtained in our previous work. The position of the transmission peaks in the structure with the exponential gradation of thickness is higher than the non-graded and linear graded, and the transmission peaks are sharper in TE polarization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Saleh, M. Teich, Fundamental of Photonics (Wiley, New York, 2019)

  2. A. Sukhovanov, V. Guryev, Photonic Crystals: Physics and Practical Modeling, Springer Series in Optical Science (New York, 2009)

  3. M. Skrobogatiy, J. Yang, Fundamental of Photonic Crystal Guiding (University Press, New York, 2009)

  4. J. Joannopoulos, S. Johnson, J. Winn, R. Meade, Photonic Crystals: Modeling the Flow of Light (Princeton University Press, Princeton, 2008)

  5. K. Sakoda, Optical Properties of Photonic Crystals, Springer Series in Optical Science (New York, 2005)

  6. C. Sibilia, T. Benson, M. Marciniak, T. Szoplik, Photonic Crystals: Physics and Technology (Springer, Italia, 2008)

  7. S.A. El-Naggar, Eur. Phys. J. D 71, 11 (2017)

    Article  ADS  Google Scholar 

  8. F. Xi, L. Hu, Eur. Phys. J. D 67, 224 (2013)

    Article  ADS  Google Scholar 

  9. F. Xi, L. Hu, Eur. Phys. J. D 66, 33 (2012)

    Article  ADS  Google Scholar 

  10. Z. Zare, A. Gharaati, Acta Phys. Pol. A 125, 36 (2014)

    Article  ADS  Google Scholar 

  11. A. Gharaati, Z. Zare, PIER M 20, 81 (2011)

    Article  Google Scholar 

  12. D.M. El-Amassi, S.A. Taya, N.R. Ramanujam, D. Vigneswaran, R. Udaiyakumar, Superlattices Microstruct. 120, 53 (2018)

    Article  Google Scholar 

  13. N.R. Ramanujam, K.S.J. Wilson, P. Mahalakshmi, S.A. Taya, Optik 183, 203 (2019)

    Article  ADS  Google Scholar 

  14. M.M. Abadla, N.A. Tabaza, W.A. Tabaza, N.R. Ramanujam, K.S.J. Wilson, D. Vigneswaran, S. Taya, Optik 185, 784 (2019)

    Article  ADS  Google Scholar 

  15. S.A. Taya, Opto-Electron. Rev. 26, 236 (2018)

    Article  ADS  Google Scholar 

  16. A. Boudrioua, Photonic Waveguides: Theory and Applications (Wiley, United States, 2013)

  17. L. Gan, Z. Li, Sci. China Phys. Mech. Astron. 58, 114203 (2015)

    Article  Google Scholar 

  18. M.I. Georgaki, A. Botsialas, P. Argitis, N. Papanikolaou, P. Oikonomou, I. Raptis, J. Rysz, A. Budkowski, M. Chatzichristidi, Microelectron. Eng. 115, 55 (2014)

    Article  Google Scholar 

  19. Q. Gong, X. Hu, Photonic Crystals: Principles and Applications (CRC Press Taylor & Francis Group, Pan Stanford, 2014)

  20. J.M. Lourtioz, H. Benisty, V. Berger, J.M. Gerard, D. Maystre, A. Tchelnokov, Photonic Crystals Towards Nanoscale Photonic Devices (Springer, New York, 2005)

  21. E. Lotfi, K. Jamshidi-Ghaleh, F. Moslem, H. Masalehdan, Eur. Phys. J. D 60, 369 (2010)

    Article  ADS  Google Scholar 

  22. N.R. Ramanujam, I.S. Amiri, S.A. Taya, S. Olyaee, R. Udaiyakumar, A.P. Pandian, K.S.J. Wilson, P. Mahalakshmi, P.P. Yupapin, Microsyst. Technol. 25, 189 (2019)

    Article  Google Scholar 

  23. A. Gharaati, H. Azarshab, PIER B 37, 125 (2012)

    Article  Google Scholar 

  24. A. Mouldi, M. Kanzari, Optik 123, 125 (2012)

    Article  ADS  Google Scholar 

  25. R. Meisels, O. Gelashko, F. Kuchar, Photon. Nanostruct. Fundam. Appl. 10, 60 (2012)

    Article  ADS  Google Scholar 

  26. T. Jalali, A. Gharaati, M. Rastegar, Eur. Phys. J. D 73, 159 (2019)

    Article  ADS  Google Scholar 

  27. Y.H. Chang, Y.Y. Jhu, C.J. Wu, Opt. Commun. 285, 1501 (2012)

    Article  ADS  Google Scholar 

  28. A. Gharaati, Z. Zare, Pramana, J. Phys. 88, 1 (2017)

    Google Scholar 

  29. A. Gharaati, Z. Zare, Opt. Appl. XLVII 611 (2017)

    Google Scholar 

  30. T.W. Chang, C.J. Wu, Optik 124, 2028 (2013)

    Article  ADS  Google Scholar 

  31. A.H. Aly, H.A. ElSayed, J. Mod. Opt. 64, 74 (2017)

    Article  ADS  Google Scholar 

  32. J. McCalmont, M. Sigalas, G. Tuttle, K.M. Ho, C. Soukolis, Appl. Phys. Lett. 68, 2759 (1996)

    Article  ADS  Google Scholar 

  33. Z. Zare, A. Gharaati, Physica B 553, 105 (2019)

    Article  ADS  Google Scholar 

  34. I. Celanovic, D. Perreault, J. Kassakian, Phys. Rev. B 72, 075127 (2005)

    Article  ADS  Google Scholar 

  35. H. Chiang, P. Wang, P. Leung, W. Tse, Opt. Commun. 188, 283 (2001)

    Article  ADS  Google Scholar 

  36. E.D. Palik, Hand Book of Optical Constants of Solids (Academic Press, London, 1998)

  37. A. Banerjee, PIER L 11, 129 (2009)

    Article  Google Scholar 

  38. J.V. Malik, K.D. Jindal, V. Kumar, V. Kumar, A. Kumar, Kh.S. Singh, T.P. Singh, Adv. Opt. Technol. 2013, 798087 (2013)

  39. P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, New York, 2005)

  40. L. Savage, Photon. Spectra 45, 54 (2011)

    Google Scholar 

  41. D.M. El-Amassi, S.A. Taya, D. Vigneswaran, J. Theor. Appl. Phys. 12, 293 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Zare.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Z., Gharaati, A. Enhancement of transmission in 1D thermal tunable metallic photonic crystal filter with exponential gradation thickness. Eur. Phys. J. D 74, 140 (2020). https://doi.org/10.1140/epjd/e2020-10057-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10057-0

Keywords

Navigation