Skip to main content

Advertisement

Log in

Energy transport of circularly polarized waves in bi-kappa distributed plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The energy transport of circularly polarized waves (CPW) in bi-kappa distributed plasmas is studied using kinetic theory. Energy flux is examined by taking into account the wave-particle interaction. We investigate how the energy flux is affected by the variation of thermal speed, temperature anisotropy (the parallel and perpendicular temperatures are different with respect to the direction of ambient magnetic field, i.e., T > T), index κ and the wave frequency. It is found that the CPW transport their energy rapidly over distances for smaller values of the thermal speed, the index κ and the wave frequency, whereas for low values of temperature anisotropy the waves deliver their energy slowly. Thus the above-mentioned parameters play an important role in the transport of wave energy. Possible applications of the present analysis are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.S. Weibel, Phys. Fluids 10, 741 (1967).

    ADS  Google Scholar 

  2. R.G. Storer, C. Meaney, J. Plasma Phys. 10, 349 (1973).

    ADS  Google Scholar 

  3. F.A. Lyman, C.C. Poon, Phys. Fluids 14, 1582 (1971).

    ADS  Google Scholar 

  4. T.H. Khokhar, M.F. Bashir, G. Murtaza, Phys. Plasmas 24, 072105 (2017).

    ADS  Google Scholar 

  5. T.H. Khokhar, M.F. Bashir, P.H. Yoon, R.A. López, G. Murtaza, Phys. Plasmas 25, 084501 (2018).

    ADS  Google Scholar 

  6. T.H. Khokhar, P.H. Yoon, R.A. López, G. Murtaza, Phys. Plasmas 25, 082114 (2018).

    ADS  Google Scholar 

  7. I. Kaganovich, E. Startsev, G. Shvets, Phys. Plasmas 11, 3328 (2004).

    ADS  Google Scholar 

  8. L.T. Tsymbal, A.N. Cherkasov, O.F. Panchenko, Low Temp. Phys. 24, 868 (1998).

    ADS  Google Scholar 

  9. A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer (Springer, Italy, 2012).

  10. C.S. Liu, M.N. Rosenbluth, C.W. Horton Jr, Phys. Rev. Lett. 29, 1489 (1972).

    ADS  Google Scholar 

  11. D.F. Duchs, H.P. Furth, P.H. Rutherford, Nucl. Fusion 12, 341 (1972).

    Google Scholar 

  12. F.F. Chen, Phys. Plasmas 8, 3008 (2001).

    ADS  Google Scholar 

  13. T. Okumura, Phys. Res. Int. 2010, 164249 (2010).

    Google Scholar 

  14. R. Dragila, E.G. Gamaliy, Phys. Rev. A. 44, 6228 (1991).

    ADS  Google Scholar 

  15. J.P. Matte, K. Aguenaou, Phys. Rev. A. 45, 2258 (1992).

    ADS  Google Scholar 

  16. S. Stverak, P. Travnicek, M. Maksimovic, E. Marsch, A.N. Fazakerley, E.E. Scime, J. Geophys. Res. 113, A03103 (2008).

    ADS  Google Scholar 

  17. G. Livadiotis, J. Phys.: Conf. Ser. 900, 012014 (2017).

    Google Scholar 

  18. M. Lazar, V. Pierrad, S.M. Shaaban, H. Fitcher, S. Poedts, A&A 602, A44 (2017).

    ADS  Google Scholar 

  19. S.M. Shaaban, M. Lazar, R.A. López, H. Fichtner, S. Poedts, MNRAS 483, 5642 (2019).

    ADS  Google Scholar 

  20. R.A. López, M. Lazar, S.M. Shaaban, S. Poedts, P.H. Yoon, A.F. Viñas, P.S. Moya, ApJ 873, L20 (2019).

    ADS  Google Scholar 

  21. V. Pierrard, M. Lazar, Solar Phys. 267, 153 (2010).

    ADS  Google Scholar 

  22. G. Livadiotis, J. Geophys. Res. Space Phys. 120, 880 (2015).

    ADS  Google Scholar 

  23. G. Livadiotis, Kappa Distributions: Theory and Applications in Plasmas (Elsevier, 2017).

  24. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Phys. Rev. Lett. 68, 40 (1992).

    ADS  Google Scholar 

  25. A. Meige, R.W. Boswell, Phys. Plasmas 13, 092104 (2006).

    ADS  Google Scholar 

  26. S.P. Gary, D. Winske, J. Geophys. Res. 105, 751 (2000).

    Google Scholar 

  27. B. Basu, N.J. Grossbard, Phys. Plasmas 18, 092106 (2011).

    ADS  Google Scholar 

  28. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Plasma Sources Sci. Technol. 11, 525 (2002).

    ADS  Google Scholar 

  29. S. Peter Gary, Theory of Space Plasma Microinstabilities (Cambridge University Press, Cambridge, UK, 1993), p. 193.

  30. H. Naim, M.F. Bashir, G. Murtaza, Phys. Plasmas 21, 032120 (2014).

    ADS  Google Scholar 

  31. S.M. Shaaban, M. Lazar, P.H. Yoon, S. Poedts, Phys. Plasmas 25, 082105 (2018).

    ADS  Google Scholar 

  32. M. Lazar, S.M. Shaaban, H. Fichtner, S. Poedts, Phys. Plasmas 25, 022902 (2018).

    ADS  Google Scholar 

  33. H. Naim, M.F. Bashir, G. Murtaza, Phys. Plasmas 21, 102112 (2014).

    ADS  Google Scholar 

  34. A.F. Vinas, P.S. Moya, R. Navarro, J.A. Araneda, Phys. Plasmas 21, 012902 (2014).

    ADS  Google Scholar 

  35. G. Ferrante, M. Zarcone, S.A. Uryupin, Phys. Rev. Lett. 91, 085005 (2003).

    ADS  Google Scholar 

  36. G. Ferrante, M. Zarcone, D.S. Uryupina, S.A. Uryupin, Phys. Plasmas. 10, 3344 (2003).

    ADS  Google Scholar 

  37. H. Karimabadi, D. Krauss-Varban, N. Omidi, Phys. Plasmas 2, 4177 (1995).

    ADS  Google Scholar 

  38. P.H. Yoon, Phys. Scr. T60, 127 (1995).

    ADS  Google Scholar 

  39. M.F. Bashir, Z. Iqbal, I. Aslam, G. Murtaza, Phys. Plasmas 17, 102112 (2010).

    ADS  Google Scholar 

  40. R.C. Davidson, in: Basic Plasma Physics, edited by A.A. Galeev, R.N. Sudan (North-Holland, Amsterdam, 1983), Vol. 1, p. 519.

  41. G. Ferrante, M. Zarcone, S.A. Uryupin, Plasma Sources Sci. Technol. 10, 318 (2001).

    ADS  Google Scholar 

  42. I.M. Agus, D. Suarjaya, Y. Kasahara, Y. Goto, Int. J. Adv. Comput. Sci. Appl. 7, 68 (2016).

    Google Scholar 

  43. Y. Kasaba, J.L. Bougeret, L.G. Blomberg, H. Kojima, S. Yagitani, M. Moncuquet, J.G. Trotignon, G. Chanteur, A. Kumamoto, Y. Kasahara, J. Lichtenberger, Planet. Space Sci. 58, 238 (2010).

    ADS  Google Scholar 

  44. M. Lazar, S. Poedts, R. Schlickeiser, MNRAS 410, 663 (2011).

    ADS  Google Scholar 

  45. R. Gaelzer, L.F. Ziebell, A.R. Meneses, Phys. Plasmas 23, 062108 (2016).

    ADS  Google Scholar 

  46. M. Lazar, R. Schlickeiser, P.K. Shukla, Phys. Plasmas 15, 042103 (2008).

    ADS  Google Scholar 

  47. S. Zaheer, G. Murtaza, Phys. Plasmas 14, 022108 (2007).

    ADS  Google Scholar 

  48. D. Summers, R.M. Thorne, Phys. Fluids B 3, 1835 (1991).

    ADS  Google Scholar 

  49. D. Summers, S. Xue, R.M. Thorne, Phys. Plasmas 1 2012.

  50. I.A. Khan, Z. Iqbal, G. Murtaza, Eur. Phys. J. Plus 134, 80 (2019).

    Google Scholar 

  51. R.L. Lysak, Y. Song, J. Geophys. Res. 108, A4 (2003).

    Google Scholar 

  52. I.A. Khan, T.H. Khokhar, H.A. Shah, G. Murtaza, Phys. A 535, 122385 (2019).

    MathSciNet  Google Scholar 

  53. I.A. Khan, Z. Iqbal, G. Murtaza, MNRAS 491, 2403 (2020).

    ADS  Google Scholar 

  54. M. Lazar, S. Poedts, R. Schlickeiser, MNRAS 410, 666 (2011).

    Google Scholar 

  55. I.V. Golovchanskaya, Y.P. Maltsev, A.A. Ostapenko, J. Geophys. Res. 107, A1 (2002).

    Google Scholar 

  56. V.S. Sonwalkar, D.L. Carpenter, T.F. Bell, M. Spasojevic, U.S. Inan, J. Li, X. Chen, A. Venkatasubramanian, J. Harikumar, R.F. Benson, W.W.L. Taylor, B.W. Reinisch, J. Geophys. Res. 109, A11212 (2004).

    ADS  Google Scholar 

  57. S.F. Fung, R.F. Benson, D.L. Carpenter, B.W. Reinisch, D.L. Gallagher, Space Sci. Rev. 91, 391 (2000).

    ADS  Google Scholar 

  58. I.D. Kaganovich, O.V. Polomarov, C.E. Theodosiou, , IEEE Trans. Plasma Sci. 34, 696 (2006).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tajammal H. Khokhar.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhar, T.H., Khan, I.A., Shah, H.A. et al. Energy transport of circularly polarized waves in bi-kappa distributed plasmas. Eur. Phys. J. D 74, 95 (2020). https://doi.org/10.1140/epjd/e2020-100473-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100473-3

Keywords

Navigation