Sputtering of LiF and other halide crystals in the electronic energy loss regime

Abstract

Sputtering experiments were performed by irradiating LiF, NaCl, and RbCl crystals with various swift heavy ions like S, Ni, I, Au with energies between 60 and 210 MeV, C60 clusters between 12 and 30 MeV or Pb ions between 730 and 6040 MeV. Sputtered species are collected on arc-shaped catchers and subsequently analyzed by elastic recoil detection analysis or Rutherford backscattering analysis. The study focuses on angular distributions and total yields for LiF and covers a broad range of experimental parameters including cleaved or rough sample surfaces, ion fluence, beam incident angles, and different ion velocities leading to electronic energy loss (Se) values from 5 to 45 keV/nm. In most cases, the angular distribution has two components, a jet-like peak perpendicular to the surface sample superimposed on a broad isotropic cosine distribution whatever is the beam incident angle. The observation of the jet depends mainly on the surface flatness and angle of ion incidence. However, the jet does not appear clearly when irradiated with C60 cluster. The sputtering yield is stoichiometric and characterized by huge total yields of up to a few 105 atoms per incident ion. The yield follows a power law as function of electronic energy loss, Y follows an exponential law with Sen with n ~ 4. While the azimuthal symmetry for sputtering is observed at low ion velocity (~1 MeV/u), it seems to be lost at high velocity (>4 MeV/u). The data provide a comprehensive overview how the angular distribution and the total sputtering yield scale with the energy loss, beam incidence angle and ion velocity. Complementary experiments have been done with NaCl and RbCl targets confirming the observation made for LiF.

Graphical abstract

This is a preview of subscription content, log in to check access.

Change history

  • 15 September 2020

    A typographical error remains in the publication of the first name of Aymann S. El-Said: Aymann should be written as Ayman.

References

  1. 1.

    R. Behrisch, W. Eckstein, eds., Sputtering by Particle Bombardment, Topics in Applied Physics (2007), Vol. 110, p. 1

  2. 2.

    W. Assmann, M. Toulemonde, C. Trautmann, Springer Topics in Applied Physics, edited by R. Behrisch and W. Eckstein(Springer Verlag, Berlin, New York, Heidelberg, 2007), Vol. 110, p. 401

  3. 3.

    N. Khalfaoui, C.C. Rotaru, S. Bouffard, M. Toulemonde, J.P. Stoquert, F. Haas, C. Trautmann, J. Jensen, A. Dunlop, Nucl. Instrum. Methods Phys. Res., Sect. B 240, 819 (2005)

    ADS  Article  Google Scholar 

  4. 4.

    M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, C. Trautmann, Nucl. Instrum. Methods Phys. Res., Sect. B 277, 285 (2012)

    Article  Google Scholar 

  5. 5.

    M. Lang, R. Devanathan, M. Toulemonde, C. Trautmann, COSSMS 29, 39 (2015)

    ADS  Google Scholar 

  6. 6.

    C. Dufour, M. Toulemonde, Surf. Sci. 61, 63 (2016)

    Google Scholar 

  7. 7.

    P. Sigmund, in Ion Beam Science, Solved and Unsolved Problems, Matematisk-fysiske Meddelelser (2006), Vol. 52

  8. 8.

    M. Toulemonde, A. Benyagoub, C. Trautmann, N. Khalfaoui, M. Boccanfuso, C. Dufour, F. Gourbilleau, J.J. Grob, J.P. Stoquert, J.M. Costantini, F. Haas, E. Jacquet, K.-O. Voss, A. Meftah, Phys. Rev. B 85, 054112 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    M. Sall, I. Monnet, F. Moisy, C. Grygiel, S. Jublot-Leclerc, S. Della-Negra, M. Toulemonde, E. Balanzat, J. Mater. Sci. 50, 5214 (2015)

    ADS  Article  Google Scholar 

  10. 10.

    A. Dunlop, D. Lesueur, P. Legrand, H. Dammak, Nucl. Instrum. Methods Phys. Res., Sect. B 90, 330 (1994)

    ADS  Article  Google Scholar 

  11. 11.

    N. Itoh, D.M. Duffy, S. Khakshouri, A.M. Stoneham, J. Phys.: Condens. Matter 21, 474205 (2009)

    ADS  Google Scholar 

  12. 12.

    G. Strazzulla, L. Torrisi, S. Coffa, G. Foti, Icarus 70, 379 (1987)

    ADS  Article  Google Scholar 

  13. 13.

    G. Strazzulla, G.A. Baratta, G. Leto, G. Foti, Europhys. Lett. 18, 517 (1992)

    ADS  Article  Google Scholar 

  14. 14.

    R.E. Johnson, R.W. Carlson, J.F. Cooper, C. Paranicas, M.H. Moore, M.C. Wong, in Jupiter, Cambridge Planetary Science (2004), Vo. 1, p. 485

  15. 15.

    H. Rothard, A. Domaracka, P. Boduch, M.E. Palumbo, G. Strazzulla, E.F. da Siveira, E. Dartois, J. Phys. B: At. Mol. Opt. Phys. 50, 062001 (2017)

    ADS  Article  Google Scholar 

  16. 16.

    A. Meftah, W. Assmann, N. Khalfaoui, J.P. Stoquert, F. Studer, M. Toulemonde, C. Trautmann, K.-O. Voss, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 955 (2011)

    ADS  Article  Google Scholar 

  17. 17.

    M. Toulemonde, W. Assmann, F. Grüner, C. Trautmann, Phys. Rev. Lett. 88, 057602 (2002)

    ADS  Article  Google Scholar 

  18. 18.

    A. Meftah, F. Brisard, J.M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J.P. Stoquert, F. Studer, M. Toulemonde, Phys. Rev. B 49, 12457 (1994)

    ADS  Article  Google Scholar 

  19. 19.

    C. Rotaru, F. Pawlak, N. Khalfaoui, C. Dufour, J. Perrière, A. Laurent, J.P. Stoquert, H. Lebius, M. Toulemonde, Nucl. Instrum. Methods Phys. Res., Sect. B 272, 9 (2012)

    ADS  Article  Google Scholar 

  20. 20.

    M. Matsunami, N. Sataka, A. Iwase, Nucl. Instrum. Methods Phys. Res., Sect. B 193, 830 (2002)

    ADS  Article  Google Scholar 

  21. 21.

    M. Matsunami, N. Sataka, A. Iwase, S. Okayasu, Nucl. Instrum. Methods Phys. Res., Sect. B 209, 288 (2003)

    ADS  Article  Google Scholar 

  22. 22.

    W.M. Arnoldbik, T. Tomazeiu, F.H.P.M. Habraken, Nucl. Instrum. Methods Phys. Res., Sect. B 203, 151 (2003)

    ADS  Article  Google Scholar 

  23. 23.

    J. Chaumont, H. Bernas, A. Kusnetsov, C. Clerc, L. Dumoulin, Nucl. Instrum. Methods Phys. Res., Sect. B 129, 436 (1887)

    ADS  Article  Google Scholar 

  24. 24.

    M. Toulemonde, W. Assmann, C. Trautmann, Nucl. Instrum. Methods Phys. Res., Sect. B 379, 2 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, F. Studer, C. Trautmann, Mat. Fys. Medd. 52, 263 (2006)

    Google Scholar 

  26. 26.

    W. Assmann, B. Ban-d’Etat, M. Bender, P. Boduch, P.L. Grande, H. Lebius, D. Lelièvre, G.G. Marmitt, H. Rothard, T. Seidl, D. Severin, K.-O. Voss, M. Toulemonde, C. Trautmann, Nucl. Instrum. Methods Phys. Res., Sect. B 392, 94 (2017)

    ADS  Article  Google Scholar 

  27. 27.

    S. Bouffard, J.P. Duraud, M. Mosbach, S. Schlutig, Nucl. Instrum. Methods Phys. Res., Sect. B 141, 372 (1998)

    ADS  Article  Google Scholar 

  28. 28.

    S. Schlutig, , Ph.D. thesis, Univeristy of Caen, 2001, http://tel.archives-ouvertes.fr/tel-00002110/fr/

  29. 29.

    W.L. Brown, L.J. Lanzerotti, J.M. Poate, W.M. Angustyniak, Phys. Rev. Lett. 40, 1027 (1978)

    ADS  Article  Google Scholar 

  30. 30.

    J.E. Griffith, R.A. Weller, L.E. Seiberling, T.A. Tombrello, Radiat. Eff. 51, 223 (1980)

    Article  Google Scholar 

  31. 31.

    L.E. Seiberling, J.E. Griffith, T.A. Tombrello, Radiat. Eff. 52, 405 (1980)

    Article  Google Scholar 

  32. 32.

    H.D. Mieskes, W. Assmann, F. Grüner, H. Kucal, Z.G. Wang, M. Toulemonde, Phys. Rev. B 67, 155414 (2003)

    ADS  Article  Google Scholar 

  33. 33.

    H.D. Mieskes, Ph.D. thesis, Univ. München, 1999

  34. 34.

    A. Meftah, M. Djebara, J.P. Stoquert, F. Studer, M. Toulemonde, Nucl. Instrum. Methods Phys. Res., Sect. B 107, 405 (1996)

    Article  Google Scholar 

  35. 35.

    M. Toulemonde, W. Assmann, C. Trautmann, F. Grüner, H.D. Mieskes, H. Kucal, Z.G. Wang, Nucl. Instrum. Methods Phys. Res., Sect. B 212, 346 (2003)

    ADS  Article  Google Scholar 

  36. 36.

    R. Martinez, T. Langlinay, P. Boduch, A. Cassimi, H. Hijazi, F. Ropars, P. Salou, E.F. da Silveira, H. Rothard, Mater. Res. Express 2, 076403 (2015)

    ADS  Article  Google Scholar 

  37. 37.

    H. Hijazi, T. Langlinay, H. Rothard, P. Boduch, F. Ropars, A. Cassimi, L.S. Farenzina, E.F. da Silveira, Eur. Phys. J. D 68, 185 (2014)

    ADS  Article  Google Scholar 

  38. 38.

    H. Hijazi, H. Rothard, P. Boduch, I. Alzahzer, T. Langlinay, A. Cassimi, F. Ropars, T. Been, J.M. Ramillon, H. Lebius, B. Ban d’Etat, L.S. Farenza, E.F. da Silveira, Eur. Phys. J. D 6, 305 (2012)

    ADS  Article  Google Scholar 

  39. 39.

    H. Hijazi, H. Rothard, P. Boduch, I. Alzahzer, F. Ropars, A. Cassimi, J.M. Ramillon, T. Been, B. Ban d’Etat, H. Lebius, L.S. Farenza, E.F. da Silveira, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 1003 (2011)

    ADS  Article  Google Scholar 

  40. 40.

    J. Lenoir, P. Boduch, H. Rothard, B. Ban d’Etat, T. Been, A. Cassimi, T. Jalowy, H. Lebius, B. Manil, J.M. Ramillon, Nucl. Instrum. Methods Phys. Res., Sect. B 2, 178 (2007)

    ADS  Article  Google Scholar 

  41. 41.

    A. Dunlop, G. Jaskierowicz, J. Jensen, S. Della Negra, Nucl. Instrum. Methods Phys. Res., Sect. B 132, 93 (1997)

    ADS  Article  Google Scholar 

  42. 42.

    K. Baudin, A. Brunelle, M. Chabot, S. Della-Negra, J. Depauw, D. Gardès, P. Håkansson, Y. Le Beyec, A. Billebaud, M. Fallavier, J. Remillieux, J.C. Poizat, J.P. Thomas, Nucl. Instrum. Methods Phys. Res., Sect. B 94, 341 (1994)

    ADS  Article  Google Scholar 

  43. 43.

    J.F. Ziegler, J.P. Biersack, M.D. Ziegler, The Stopping and Range of Ions in Solids (SRIM Co., 2008)

  44. 44.

    http://www.ganil-spiral2.eu/science-us/accelerator (the alpha spectrometer is shown in a movie and appears after 1:31 min)

  45. 45.

    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010)

    ADS  Article  Google Scholar 

  46. 46.

    B. Ban-d’Etat, F. Haranger, P. Boduch, P.S. Bouffard, H. Lebius, L. Maunoury, J.Y. Pacquet, H. Rothard, C. Clerc, F. Garrido, L. Thome, R. Hellhammer, Z. Pesic, N. Stolterfoht, Phys. Scr. T110, 389 (2004)

    ADS  Article  Google Scholar 

  47. 47.

    http://crystal-gmbh.com/index.en.php

  48. 48.

    W. Assmann, J.A. Davies, G. Dollinger, J.S. Forster, H. Huber, T. Reichelt, R. Siegele, Nucl. Instrum. Methods Phys. Res., Sect. B 118, 242 (1996)

    ADS  Article  Google Scholar 

  49. 49.

    W. Assmann, P. Hartung, H. Huber, P. Staat, H. Steffens, C. Steinhausen, Nucl. Instrum. Methods Phys. Res., Sect. B 85, 726 (1994)

    ADS  Article  Google Scholar 

  50. 50.

    W. Assmann, H. Huber, C. Steinhausen, M. Dobler, H. Glückler, A. Weidinger, Nucl. Instrum. Methods Phys. Res., Sect. B 89, 131 (1994)

    ADS  Article  Google Scholar 

  51. 51.

    M. Toulemonde, W. Assmann, D. Müller, C. Trautmann, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 501 (2017)

    ADS  Article  Google Scholar 

  52. 52.

    http://icube-macepv.unistra.fr/fr/index.php/ACACIA

  53. 53.

    A. Meftah, W. Assmann, N. Khalfaoui, J.P. Stoquert, F. Studer, M. Toulemonde, C. Trautmann, K.-O. Voss, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 955 (2011)

    ADS  Article  Google Scholar 

  54. 54.

    G. Dollinger, M. Boulouednine, A. Bergmaier, T. Faestermann, C.M. Frey, Nucl. Instrum. Methods Phys. Res., Sect. B 118, 291 (1996)

    ADS  Article  Google Scholar 

  55. 55.

    J.A.M. Pereira, E.F. da Silveira, Nucl. Instrum. Methods Phys. Res., Sect. B 127, 157 (1997)

    ADS  Article  Google Scholar 

  56. 56.

    C. Ray, private communication

  57. 57.

    A. Meftah, F. Brisard, J.M. Costantini, M. Hage-Ali, J.P. Stoquert, F. Studer, M. Toulemonde, Phys. Rev. B 48, 920 (1993)

    ADS  Article  Google Scholar 

  58. 58.

    A. Meftah, J.M. Costantini, N. Khalfaoui, S. Boudjadar, J.P. Stoquert, F. Studer, M. Toulemonde, Nucl. Instrum. Methods Phys. Res., Sect. B 237, 563 (2005)

    ADS  Article  Google Scholar 

  59. 59.

    H. Hijazi, H. Rothard, P. Boduch, I. Alzaher, A. Cassimi, F. Ropars, T. Been, J.M. Ramillon, H. Lebius, B. Ban-d’Etat, L.S. Farenzena, E.F. da Silveira, Eur. Phys. J. D 66, 68 (2012)

    ADS  Article  Google Scholar 

  60. 60.

    S. Mookerjee, M. Beuve, S.A. Khan, M. Toulemonde, A. Roy, Phys. Rev. B 78, 04543 (2008)

    Article  Google Scholar 

  61. 61.

    I. Alencar, M. Hatori, G.G. Marmitt, H. Trombini, P.L. Grande, J.F. Dias, R.M. Papaléo, A. Mücklich, W. Assmann, M. Toulemonde, C. Trautmann, Submitted

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcel Toulemonde.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toulemonde, M., Assmann, W., Ban-d’Etat, B. et al. Sputtering of LiF and other halide crystals in the electronic energy loss regime. Eur. Phys. J. D 74, 144 (2020). https://doi.org/10.1140/epjd/e2020-10040-9

Download citation

Keywords

  • Atomic and Molecular Collisions