Skip to main content
Log in

Taper angle dependence of the dynamical transmission of several-hundred-keV protons through PC conical capillary

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The dynamical transmission of intermediate-energy protons through a polycarbonate (PC) conical capillary with taper angle from 0.48° to 2° are simulated. The results show that for small taper angle of 0.48°, the transmission of 100 keV protons is dominated by the deposited-charge-assisted specular reflection. This reflection effect decreases with the increase of the taper angle. When the taper angle is increased to 2°, the transmission of the protons is mainly influenced by small angle scattering, which is consistent with the experimental data. The asymptotic transmission rate decreases with the increase of the capillary taper angle. These results suggest that the deposited-charge-assisted specular reflection is significant in focusing several-hundred-keV protons.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ikeda, Y. Kanai, T.M. Kojima, Y. Iwai, T. Kambara, Y. Yamazaki, M. Hoshino, T. Nebiki, T. Narusawa, Appl. Phys. Lett. 89, 163502 (2006)

    Article  ADS  Google Scholar 

  2. N. Okabayashi, K. Komaki, Y. Yamazaki, Phys. Rev. Lett. 107, 113201 (2011)

    Article  ADS  Google Scholar 

  3. V. Maeckel, W. Meissl, T. Ikeda, M. Clever, E. Meissl, T. Kobayashi, T.M. Kojima, N. Imamoto, K. Ogiwara, Y. Yamazak, Rev. Sci. Instrum. 85, 014302 (2014)

    Article  ADS  Google Scholar 

  4. L.P. Ratliff, R. Minniti, A. Bard, E.W. Bell, J.D. Gillaspy, D. Parks, A.J. Black, G.M. Whitesides, Appl. Phys. Lett. 75, 590 (1999)

    Article  ADS  Google Scholar 

  5. T. Schweigler, C. Lemell, J. Burgdorfer, Nucl. Instrum. Methods Phys. Res. B 269, 1253 (2011)

    Article  ADS  Google Scholar 

  6. E. Giglio, S. Guillous, A. Cassimi, Phys. Rev. A 98, 052704 (2018)

    Article  ADS  Google Scholar 

  7. T. Nebiki, T. Yamamoto, T. Narusawa, J. Vacuum Sci. Technol. 21, 1671 (2003)

    Article  ADS  Google Scholar 

  8. T. Nebiki, M.H. Kabir, T. Narusawa, Nucl. Instrum. Methods Phys. Res. B 249, 226 (2006)

    Article  ADS  Google Scholar 

  9. J. Hasegawa, S. Jaiyen, C. Polee, N. Chankow, Y. Oguri, J. Appl. Phys. 110, 044913 (2011)

    Article  ADS  Google Scholar 

  10. T. Nebiki, D. Sekiba, H. Yonemura, M. Wilded, S. Ogurad, H. Yamashitad, M. Matsumotod, K. Fukutanid, T. Okanod, J. Kasagic, Y. Iwamurae, T. Itohe, S. Kuribayashie, H. Matsuzakif, T. Narusawa, Nucl. Instrum. Methods Phys. Res. B 266, 1324 (2008)

    Article  ADS  Google Scholar 

  11. K.A. Vokhmyanina, L.A. Zhilyakov, A.V. Kostanovsky, V.S. Kulikauskas, V.P. Petukhov, G.P. Pokhil, J. Phys. A Math. Gen. 39, 4775 (2006)

    Article  ADS  Google Scholar 

  12. A.X. Yang, B.H. Zhu, S.T. Niu, P. Pan, C.Z. Han, H.Y. Song, J.X. Shao, X.M. Chen, Phys. Rev. A 97, 052706 (2018)

    Article  ADS  Google Scholar 

  13. S.D. Liu, Y.Y. Wang, Y.T. Zhao, X.M. Zhou, R. Cheng, Y. Lei, Y.B. Sun, J.R. Ren, J.L. Duan, J. Liu, H.S. Xu, G.Q. Xiao, Phys. Rev. A 91, 012714 (2015)

    Article  ADS  Google Scholar 

  14. G.Y. Wang, J.X. Shao, Q. Song, D. Mo, A.X. Yang, X. Ma, W. Zhou, Y. Cui, Y. Li, Z.L. Liu, X.M. Chen, Sci. Rep. 5, 15169 (2015)

    Article  ADS  Google Scholar 

  15. L.F. Errea, C. Illescas, L. Méndez, B. Pons, I. Rabadán, A. Riera, Phys. Rev. A 76, 040701(R) (2007)

    Article  ADS  Google Scholar 

  16. C. Illescas, A. Riera, Phys. Rev. A 60, 4546 (1999)

    Article  ADS  Google Scholar 

  17. K. Schiessl, W. Palfinger, K. Tokesi, H. Nowotny, C. Lemell, J. Burgorfer, Phys. Rev. A 72, 062902 (2005)

    Article  ADS  Google Scholar 

  18. N. Stolterfoht, Phys. Rev. A 87, 032901 (2013)

    Article  ADS  Google Scholar 

  19. R. Pfandzelter, F. Stolzle, Nucl. Instrum. Methods Phys. Res. B 72, 163 (1992)

    Article  ADS  Google Scholar 

  20. F. Hespeels, R. Tonneau, T. Ikeda, S. Lucas, Nucl. Instrum. Methods Phys. Res. B 362, 72 (2015)

    Article  ADS  Google Scholar 

  21. B. Mazuy, A. Belkacem, M. Chevallie, M.J. Gaillard, J.C. Poizat, J. Millieux, Nucl. Instrum. Methods Phys. Res. B 28, 497 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Xiang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, AX., Zhu, CY., Qu, Z. et al. Taper angle dependence of the dynamical transmission of several-hundred-keV protons through PC conical capillary. Eur. Phys. J. D 74, 192 (2020). https://doi.org/10.1140/epjd/e2020-10027-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10027-6

Keywords

Navigation