Skip to main content
Log in

Robustness of purity: an operational approach to resource theory of purity

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Quantifying purity is a basic problem for quantum information theory. In this paper, we introduce the robustness of purity which has an operational interpretation. We find that robustness of purity satisfies all requirements for a valid purity measure, even for the stronger monotonicity which has not discussed before in the resource theory of purity. The upper and lower bounds of robustness of purity are obtained. The robustness of purity has an efficient numberical computability via semidefinite programming. We also prove the robustness of purity has operational significance as the best advantage one can obtain in mixture of unitary channel discrimination games. A trade-off relation between robustness of purity and mixedness is obtained. Finally, we discuss whether all the conditions holds for Rényi α-entropy purity and linear entropy purity respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Streltsov, G. Adesso, M.B. Plenio, Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  Google Scholar 

  2. V. Veitch, S.H. Mousavian, D. Gottesman, J. Emerson, New J. Phys. 16, 013009 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  3. R. Gallego, L. Aolita, Phys. Rev. X 5, 041008 (2015)

    Google Scholar 

  4. A. Streltsov, H. Kampermann, S. Wölk, M. Gessner, D. Bruß, New J. Phys. 20, 053058 (2018)

    Article  ADS  Google Scholar 

  5. M. Horodecki, J. Oppenheim, Int. J. Mod. Phys. B 27, 1345019 (2013)

    Article  ADS  Google Scholar 

  6. B. Coecke, T. Fritz, R.W. Spekkens, Inf. Comput. 250, 59 (2016)

    Article  Google Scholar 

  7. F.G.S.L. Brandão, G. Gour, Phys. Rev. Lett. 115, 070503 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Anshu, M.-H. Hsieh, R. Jain, Phys. Rev. Lett. 121, 190504 (2018)

    Article  ADS  Google Scholar 

  9. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  10. Z. Xi, J. Phys. A: Math. Theor. 51, 414016 (2018)

    Article  Google Scholar 

  11. L.-H. Shao, Z. Xi, H. Fan, Y. Li, Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  12. T. Baumgratz, M. Cramer, M.B. Plenio, Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  13. F.G.S.L. Brandão, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, Phys. Rev. Lett. 111, 250404 (2013)

    Article  ADS  Google Scholar 

  14. G. Gour, R.W. Spekkens, New J. Phys. 10, 033023 (2008)

    Article  ADS  Google Scholar 

  15. J.I. De Vicente, J. Phys. A: Math. Theor. 47, 424017 (2014)

    Article  ADS  Google Scholar 

  16. B. Amaral, A. Cabello, M.T. Cunha, L. Aolita, Phys. Rev. Lett. 120, 130403 (2018)

    Article  ADS  Google Scholar 

  17. A. Hickey, G. Gour, J. Phys. A: Math. Theor. 51, 414009 (2018)

    Article  Google Scholar 

  18. T. Theurer, N. Killoran, D. Egloff, M.B. Plenio, Phys. Rev. Lett. 119, 230401 (2017)

    Article  ADS  Google Scholar 

  19. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  20. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  21. M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2002)

  22. A.W. Harrow, A. Hassidim, S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. G. Gour, M.P. Müller, V. Narasimhachar, R.W. Spekkens, N.Y. Halpern, Phys. Rep. 583, 1 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Horodecki, P. Horodecki, J. Oppenheim, Phys. Rev. A 67, 062104 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  25. C. Napoli, T.R. Bromley, M. Cianciaruso, M. Piani, N. Johnston, G. Adesso, Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  26. G. Vidal, R. Tarrach, Phys. Rev. A 59, 141 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Piani, J. Watrous, Phys. Rev. Lett. 114, 060404 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  28. R. Takagi, B. Regula, K. Bu, Z.-W. Liu, G. Adesso, arXiv:1809.01672 (2018)

  29. P. Skrzypczyk, N. Linden, arXiv:1809.02570 (2018)

  30. N.A. Peters, T.-C. Wei, P.G. Kwiat, Phys. Rev. A 70, 052309 (2004)

    Article  ADS  Google Scholar 

  31. R. Bhatia, in Matrix Analysis (Springer Science & Business Media, 2013), Vol. 169

  32. C.B. Mendl, M.M. Wolf, Commun. Math. Phys. 289, 1057 (2009)

    Article  ADS  Google Scholar 

  33. J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018)

  34. T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Hänsel, M. Hennrich, R. Blatt, Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Li, Y. Robustness of purity: an operational approach to resource theory of purity. Eur. Phys. J. D 73, 89 (2019). https://doi.org/10.1140/epjd/e2019-90693-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90693-y

Keywords

Navigation