Skip to main content
Log in

DFT calculations of the structures, electronic and spectral properties for FenSm (2 ≤ n + m ≤ 5) clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The geometric structures, electronic and magnetic properties of the FenSm (2 ≤ n + m ≤ 5) small clusters are investigated using the density functional theory (DFT) method. The relative stability and chemical activity are analyzed based on the averaged atomization energy (Ea), energy gap (Eg), vertical electron affinity (VEA) and vertical ionization potentials (VIP) for the most stable FenSm (2 ≤ n + m ≤ 5) clusters. Fe2S3 and Fe3S2 clusters are expected to have the highest and the lowest energy gaps, corresponding to the highest chemical stability and highest chemical activity, respectively. The total magnetic moments of FeSm (1 ≤ m ≤ 4) clusters are 4.0 μB, mainly attributed to Fe atoms except for FeS3. Meanwhile the infrared vibrational spectra and photoelectron spectra are simulated to identify FenSm (2 ≤ n + m ≤ 5) clusters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jena, J.A.W. Cattleman, Nanoclusters: A Bridge Across Disciplines (Elsevier, Oxford, 2010)

  2. J. Zhao, X. Huang, P. Jin, Z. Chen, Coord. Chem. Rev. 289–290, 315 (2015)

    Article  Google Scholar 

  3. A. Lunghi, M. Iannuzzi, R. Sessoli, F. Totti, J. Mater. Chem. C 28, 7294 (2015)

    Article  Google Scholar 

  4. L.J.K. Cook, R. Mohammed, G. Sherborne, T.D. Roberts, S. Alvarez, M.A. Halcrow, Coord. Chem. Rev. 289–290, 2 (2015)

    Article  Google Scholar 

  5. J. Meyer, M. Tombers, C. van Wullen, G. Niedner-Schatteburg, S. Peredkov, W. Eberhardt, M. Neeb, S. Palutke, M. Martins, W. Wurth, J. Chem. Phys. 143, 104302 (2015)

    Article  ADS  Google Scholar 

  6. H. Purdum, P.A. Montano, G.K. Shenoy, T. Morrison, Phys. Rev. B 25, 4412 (1982)

    Article  ADS  Google Scholar 

  7. D.G. Leopold, W.C. Lineberger, J. Chem. Phys. 85, 51 (1986)

    Article  ADS  Google Scholar 

  8. R. Liyanage, J.B. Griffin, P.B. Armentrout, J. Chem. Phys. 119, 8979 (2003)

    Article  ADS  Google Scholar 

  9. E.K. Parks, B.H. Weiller, P.S. Bechthold, W.F. Hoffman, G.C. Nieman, L.G. Pobo, S.J. Riley, J. Chem. Phys. 88, 1622 (1988)

    Article  ADS  Google Scholar 

  10. N. Zhang, T. Hayase, H. Kawamata, K. Nakao, A. Nakajima, K. Kaya, J. Chem. Phys. 104, 3413 (1996)

    Article  ADS  Google Scholar 

  11. H. Beinert, R.H. Holm, E. Münck, Science 277, 653 (1997)

    Article  Google Scholar 

  12. H. Beinert, FASEB J. 4, 2483 (1990)

    Article  Google Scholar 

  13. S. Yin, Z. Wang, E.R. Bernstein, Phys. Chem. Chem. Phys. 15, 4699 (2013)

    Article  Google Scholar 

  14. L.S. Wang, C.F. Ding, X.B. Wang, S.E. Barlow, Rev. Sci. Instr. 70, 1957 (1999)

    Article  ADS  Google Scholar 

  15. J.L. Chen, C.S. Wang, K.A. Jackson, M.R. Pederson, Phys. Rev. B 44, 6558 (1991)

    Article  ADS  Google Scholar 

  16. X.G. Gong, Q.Q. Zheng, J. Phys.: Condens. Matter 7, 2421 (1995)

    ADS  Google Scholar 

  17. Q.M. Ma, Z. Xie, J. Wang, Y. Liu, Y.C. Li, Solid State Commun. 142, 114 (2007)

    Article  ADS  Google Scholar 

  18. K. Koszinowski, D. Schröder, H. Schwarz, Eur. J. Inorg. Chem. 2004, 44 (2004)

    Article  Google Scholar 

  19. D.H. Flint, R.M. Allen, Chem. Rev. 96, 2315 (1996)

    Article  Google Scholar 

  20. A. Lombardi, C.M. Summa, S. Geremia, L. Randaccio, V. Pavone, W.F. DeGrado, PNAS 97, 6298 (2000)

    Article  ADS  Google Scholar 

  21. S. Inomata, H. Ogino, H. Tobita, Chem. Rev. 107, 2093 (1998)

    Google Scholar 

  22. A. Nakajima, T. Hayase, F. Hayakawa, K. Kaya, Chem. Phys. Lett. 280, 381 (1997)

    Article  ADS  Google Scholar 

  23. N.S. Sickerman, M.W. Ribbe, Y. Hu, Acc. Chem. Res. 50, 2834 (2017)

    Article  Google Scholar 

  24. N.S. Sickerman, K. Tanifuji, Y. Hu, M.W. Ribbe, Chemistry 23, 12425 (2017)

    Article  Google Scholar 

  25. I. Djurdjevic, O. Einsle, L. Decamps, Chem. Asian J. 12, 1447 (2017)

    Article  Google Scholar 

  26. I. Coric, B.Q. Mercado, E. Bill, D.J. Vinyard, P.L. Holland, Nature 526, 96 (2015)

    Article  ADS  Google Scholar 

  27. C.J. Pollock, L.L. Tan, W. Zhang, K.M. Lancaster, S.C. Lee, S. DeBeer, Inorg. Chem. 53, 2591 (2014)

    Article  Google Scholar 

  28. O. Hübner, V. Termath, A. Berning, J. Sauer, Chem. Phys. Lett. 294, 37 (1998)

    Article  ADS  Google Scholar 

  29. M.N. Glukhovtsev, R.D. Bach, C.J. Nagel, J. Phys. Chem. A 101, 316 (1997)

    Article  Google Scholar 

  30. L. Lin, P. Claes, P. Gruene, G. Meijer, A. Fielicke, ChemPhysChem 11, 1932 (2010)

    Google Scholar 

  31. M. Iwamatsu, Y. Okabe, Chem. Phys. Lett. 399, 396 (2004)

    Article  ADS  Google Scholar 

  32. H.G. Kim, S.K. Choi, H.M. Lee, J. Chem. Phys. 128, 144702 (2008)

    Article  ADS  Google Scholar 

  33. D.J. Wales, J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997)

    Article  Google Scholar 

  34. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  ADS  Google Scholar 

  35. D.C. Ashley, E. Jakubikova, Inorg. Chem. 57, 5585 (2018)

    Article  Google Scholar 

  36. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)

    Article  ADS  Google Scholar 

  37. A. Aktürk, A. Sebetci, AIP Adv. 6, 055103 (2016)

    Article  ADS  Google Scholar 

  38. G. Dong, L. Cao, U. Ryde, J. Biol. Inorg. Chem. 23, 221 (2018)

    Article  Google Scholar 

  39. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.2 (Gaussian, Inc., Wallingford, CT, 2009)

  40. S.Y. Yan, Z.H. Zhu, Chin. Phys. 15, 1517 (2006)

    Article  ADS  Google Scholar 

  41. C. Angeli, R. Cimiraglia, Mol. Phys. 109, 1503 (2011)

    Article  ADS  Google Scholar 

  42. K. Cervantes-Salguero, J.M. Seminario, J. Mol. Model. 18, 4043 (2012)

    Article  Google Scholar 

  43. M. Castro, D.R. Salahub, Phys. Rev. B 47, 10955 (1993)

    Article  ADS  Google Scholar 

  44. E.P.P. Lenain, J.L. Lesne, J. Corset, J. Mol. Struct. 142, 355 (1986)

    Article  ADS  Google Scholar 

  45. S. Millefiori, A. Alparone, J. Phys. Chem. A 105, 9489 (2001)

    Article  Google Scholar 

  46. H. Beinert, Eur. J. Biochem. 267, 5657 (2000)

    Article  Google Scholar 

  47. M.D. Chen, M.L. Liu, H.B. Luo, Q.E. Zhang, C.T. Au, J. Mol. Struct. (Theochem) 548, 133 (2001)

    Article  Google Scholar 

  48. M.D. Chen, M.L. Liu, H.B. Luo, Q.E. Zhang, C.T. Au, Chem. Phys. Lett. 350, 119 (2001)

    Article  ADS  Google Scholar 

  49. A.J. Jackson, D. Tiana, A. Walsh, Chem. Sci. 7, 1082 (2016)

    Article  Google Scholar 

  50. H.J. Zhai, B. Kiran, L.S. Wang, J. Phys. Chem. A 107, 2821 (2003)

    Article  Google Scholar 

  51. J. Luo, Z.Q. Xue, W.M. Liu, J.L. Wu, Z.Q. Yang, J. Phys. Chem. A 110, 12005 (2006)

    Article  Google Scholar 

  52. E.M. Sosa-Hernández, J.M. Montejano-Carrizales, P.G. Alvarado-Leyva, Eur. Phys. J. D 71, 284 (2017)

    Article  ADS  Google Scholar 

  53. Y.F. Li, X.Y. Kuang, S.J. Wang, Y. Li, Y.R. Zhao, Phys. Lett. A 375, 1877 (2011)

    Article  ADS  Google Scholar 

  54. K.H. Park, K. Jang, S. Kim, H.J. Kim, S.U. Son, J. Am. Chem. Soc. 128, 14780 (2006)

    Article  Google Scholar 

  55. D. Die, B.X. Zheng, L.Q. Zhao, Q.W. Zhu, Z.Q. Zhao, Sci. Rep. 6, 31978 (2016)

    Article  ADS  Google Scholar 

  56. A.G. Prieto, M.L. Fdez-Gubieda, J. Chaboy, M.A. Laguna-Marco, T. Muro, T. Nakamura, Phys. Rev. B 72, 212403 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, H., Li, X. et al. DFT calculations of the structures, electronic and spectral properties for FenSm (2 ≤ n + m ≤ 5) clusters. Eur. Phys. J. D 73, 59 (2019). https://doi.org/10.1140/epjd/e2019-90640-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90640-0

Keywords

Navigation