Skip to main content
Log in

Chaos synchronization of coupled nano-quantum cascade lasers with negative optoelectronic feedback

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, a theoretical investigation of chaos synchronization in two nano-quantum cascade lasers with delayed negative optoelectronic feedback is presented. Since the spontaneous emission effect is an important factor in a microcavity the rate equations model has been reconsidered to include the Purcell spontaneous emission enhancement factor F and the spontaneous emission factor. It is found that the synchronization takes place under suitable system parameters. The results indicate that the coupling strength, the delay time in the transmitter, and the transmission time between the two lasers have significant effects on the synchronization quality while the stage number and the delay time in receiver have poor effects on the synchronization quality. Also, when the system is a closed-loop or open-loop, synchronization with poor dynamics occurs when the spontaneous emission factor is small while the synchronization happens in the open-loop system only when the spontaneous emission factor is large. Furthermore, when the system is a closed-loop, synchronization occurs when Purcell factor is large while the synchronization happens to the open-loop system of any values for the spontaneous emission factor and Purcell factor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rostami, H. Rasooli, H. Baghban, Terahertz Technology: Fundamentals and Applications (Springer Science & Business Media, Berlin, Heidelberg, 2010)

  2. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)

    Article  ADS  Google Scholar 

  3. C. Walther, Low frequency and circuit based quantum cascade lasers, Doctoral dissertation, ETH Zurich, 2011

  4. S.-C. Chan, J.-M. Liu, IEEE J. Quantum Electron. 41, 1142 (2005)

    Article  ADS  Google Scholar 

  5. B. Farias, T.P. de Silans, M. Chevrollier, M. Oria, Phys. Rev. Lett. 94, 173902 (2005)

    Article  ADS  Google Scholar 

  6. I. Fischer, Y. Liu, P. Davis, Phys. Rev. A 62, 011801 (2000)

    Article  ADS  Google Scholar 

  7. S. Hwang, J. Liu, Opt. Commun. 169, 167 (1999)

    Article  ADS  Google Scholar 

  8. K. Kusumoto, J. Ohtsubo, Opt. Lett. 27, 989 (2002)

    Article  ADS  Google Scholar 

  9. C.H. Lee, S.Y. Shin, Appl. Phys. Lett. 62, 922 (1993)

    Article  ADS  Google Scholar 

  10. M. Nizette, T. Erneux, A. Gavrielides, V. Kovanis, T. Simpson, Phys. Rev. E 65, 056610 (2002)

    Article  ADS  Google Scholar 

  11. S. Rajesh, V. Nandakumaran, Phys. D 213, 113 (2006)

    Article  MathSciNet  Google Scholar 

  12. R. Vicente, S. Tang, J. Mulet, C.R. Mirasso, J.-M. Liu, Phys. Rev. E 73, 047201 (2006)

    Article  ADS  Google Scholar 

  13. G.-Q. Xia, Z.-M. Wu, X.-H. Jia, J. Light. Technol. 23, 4296 (2005)

    Article  Google Scholar 

  14. D.M. Kane, K.A. Shore, in Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, 1st edn. (John Wiley & Sons, NY, 2005), pp. 187–188

  15. F.Y. Lin, J.M. Liu, IEEE J. Quantum Electron. 39, 562 (2003)

    Article  ADS  Google Scholar 

  16. J. Ohtsubo, in Semiconductor Lasers: Stability, Instability and Chaos, 3rd edn. (Springer, Berlin, 2012), pp. 447–448

  17. S. Tang, J. Liu, IEEE J. Quantum Electron. 37, 329 (2001)

    Article  ADS  Google Scholar 

  18. S. Turovets, J. Dellunde, K. Shore, J. Opt. Soc. Am. B 14, 200 (1997)

    Article  ADS  Google Scholar 

  19. A. Uchida, in Optical Communication With Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization, 1st edn. (John Wiley & Sons, NY, 2012), pp. 237–238

  20. H. Waried, Chin. J. Phys. 56, 1113 (2018)

    Article  Google Scholar 

  21. H. Han, K.A. Shore, IEEE J. Quantum Electron. 52, 11 (2016)

    Article  Google Scholar 

  22. Z.A. Sattar, N.A. Kamel, K.A. Shore, IEEE J. Quantum Electron. 52, 2 (2016)

    Article  Google Scholar 

  23. H. Waried, Phys. Chem. Res. 5, 377 (2017)

    Google Scholar 

  24. Y. Todorov, I. Sagnes, I. Abram, C. Minot, Phys. Rev. Lett. 99, 2236 (2007)

    Article  Google Scholar 

  25. C. Wang, F. Grillot, V. Kovanis, J. Even, J. Appl. Phys. 113, 063104 (2013)

    Article  ADS  Google Scholar 

  26. H. Waried, Rece. Adva. Elec. Elec. Engi. 11, 167 (2018)

    Google Scholar 

  27. P. Kumar, A. Prasad, R. Ghosh, J. Phys. B: At. Mol. Opt. Phys. 41, 135402 (2008)

    Article  ADS  Google Scholar 

  28. P. Kumar, F. Grillot, Eur. Phys. J. Special Topics 222, 813 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein Waried.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waried, H. Chaos synchronization of coupled nano-quantum cascade lasers with negative optoelectronic feedback. Eur. Phys. J. D 73, 39 (2019). https://doi.org/10.1140/epjd/e2019-90639-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90639-5

Keywords

Navigation