Plasma waves in limited size media

  • Ehsan KoushkiEmail author
  • Ahmad Farzaneh
  • Javad Baedi
Regular Article


In this work, an analytical derivation is applied to study electronic plasma waves in limited size plasma and a generalized formula for oscillation frequency of plasma wave is obtained in this case. The effect of thermal motion of electrons is considered and the ions are considered to be rigid. In limited size plasma the wave vector of plasma waves has discrete values and this causes the oscillation frequency to have different values proportional to the electron positions. Also, this theory is expanded for the case that a constant electric field is applied to the media and group velocity is studied for finite and infinite plasmas. This model is expanded for metal particles as micro and nano-scale rods and particles and also typical Cs plasma embedded in microns. The effect of particle size on the value of oscillation frequencies is studied and micro and nano-scale metal particles are compared. It could open new sights into properties of micro and nano-rods and nano-particles, two dimensional materials and also quark–gluon plasma physics.

Graphical abstract


Plasma Physics 


  1. 1.
    F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed. (Springer, New York, 1994)Google Scholar
  2. 2.
    S.J. Hardy, D.B. Melrose, ApJ 480, 705713 (1997)CrossRefGoogle Scholar
  3. 3.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics, 1st ed. (Saunders College Publishing, New York, 1976)Google Scholar
  4. 4.
    C. Kittle, Introduction of Solid State Physics, 7th ed. (Wiley, New York, 1996)Google Scholar
  5. 5.
    A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 5271 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    F. Forstmann, H. Stenschke, Phys. Rev. Lett. 38, 1365 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    R.H. Ritchie, A.L. Marusak, Surf. Sci. 4, 234 (1966)ADSCrossRefGoogle Scholar
  8. 8.
    A.E. Rider, K. Ostrikov, S.A. Furman, Eur. Phys. J. D 66, 226 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    R. Hrach, P. Bartoš, V. Hrachová, Eur. Phys. J. D 54, 313 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    S.G. Patching, Biochim. Biophys. Acta, Biomembr. 1838, 43 (2014)Google Scholar
  11. 11.
    S. Link, M. El-sayed, Annu. Rev. Phys. Chem. 54, 331 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    E. Koushki, H. Akherat Doost, M.H. Majles Ara, J. Phys. Chem. Solids 87, 158 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    E. Koushki, A. Farzaneh, Colloid Polym. Sci. 295, 197 (2017)CrossRefGoogle Scholar
  14. 14.
    D.H. Looney, S.C. Brown, Phys. Rev. 93, 965 (1954)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Blaizot, E. Iancu, A. Rebhan, Thermodynamics of the high-temperature quark-gluon plasma, in Quark-Gluon Plasma 3 (World Scientific, Singapore, 2004), pp. 60–122Google Scholar
  16. 16.
    M. Plümer, S. Raha, R.M. Weiner, Phys. Lett. B 139, 198 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    A.C. Tam, W. Happer, Opt. Commun. 21, 403 (1977)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsHakim Sabzevari UniversitySabzevarIran

Personalised recommendations