Skip to main content
Log in

Electron number density measurements from the frequency shift of a plasma defect state in a one-dimensional photonic crystal

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We describe the use of a plasma-functionalized vacancy defect in a one-dimensional microwave photonic crystal to experimentally measure the electron number density of glow discharges at 5–40 torr. The photonic crystal consists of spaced alumina plates with a built-in void defect that breaks the repeating symmetry of the layers, resulting in narrow defect transmission peaks within relatively deep bandgaps. We exploit the sensitivity of the defect transmission at 28 GHz to varying plasma density to measure electron number densities as low as 2 × 109 cm−3. Defect energy shifts are proportional to plasma density, in reasonable agreement with theoretical predictions of photonic crystal performance. At higher discharge current densities and discharge pressure, we see a departure from the model predictions, largely attributable to the heating of the alumina structure, causing expansion and changes in the lattice parameter that counteract the effect of the increased plasma density on the defect state frequency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.Y. Nikiforov, C. Leys, M. Gonzalez, J. Walsh, Plasma Sources Sci. Technol. 24, 034001 (2015)

    Article  ADS  Google Scholar 

  2. S. Hassaballa, K. Tomita, Y.K. Kim, K. Uchino, H. Hatanaka, Y.M. Kim, C.H. Park, K. Muraoka, Jpn. J. Appl. Phys. 44, L442 (2005)

    Article  ADS  Google Scholar 

  3. K. Urabe, H. Muneoka, S. Stauss, K. Terashima, Plasma Sources Sci. Technol. 23, 064007 (2014)

    Article  ADS  Google Scholar 

  4. X.P. Lu, M. Laroussi, Appl. Phys. Lett. 92, 051501 (2008)

    Article  ADS  Google Scholar 

  5. S. Muller, D. Luggenholscher, U. Czarnetzki, J. Phys. D: Appl. Phys. 44, 165202 (2011)

    Article  ADS  Google Scholar 

  6. H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997)

  7. T. Orrière, E. Moreau, D.Z. Pai, J. Phys. D: Appl. Phys. 51, 494002 (2018)

    Article  Google Scholar 

  8. D.M. Packan, Repetitive nanosecond glow discharge in atmospheric pressure air, Ph.D. thesis, Stanford University, 2003

  9. Y. Ito, O. Sakai, K. Tachibana, Plasma Sources Sci. Technol. 19, 025006 (2010)

    Article  ADS  Google Scholar 

  10. A. Shashurin, M. Shneider, A. Dogariu, R. Miles, M. Keidar, Appl. Phys. Lett. 96, 171502 (2010)

    Article  ADS  Google Scholar 

  11. B. Wang, M. Cappelli, Appl. Phys. Lett. 107, 171107 (2015)

    Article  ADS  Google Scholar 

  12. O. Sakai, T. Sakaguchi, T. Naito, D.-S. Lee, K. Tachibana, Plasma Phys. Control. Fusion 49, B453 (2007)

    Article  ADS  Google Scholar 

  13. J. Faith, S. Kuo, J. Huang, Phys. Rev. E 55, 1843 (1997)

    Article  ADS  Google Scholar 

  14. V. Arkhipenko, T. Callegari, L. Simonchik, J. Sokoloff, M. Usachonak, J. Appl. Phys. 116, 123302 (2014)

    Article  ADS  Google Scholar 

  15. V. Babitski, T. Callegari, L. Simonchik, J. Sokoloff, M. Usachonak, J. Appl. Phys. 122, 083302 (2017)

    Article  ADS  Google Scholar 

  16. S.J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University New Brunswick, NJ, 2002)

  17. D.R. Biggs, M.A. Cappelli, Appl. Phys. Lett. 109, 124103 (2016)

    Article  ADS  Google Scholar 

  18. M.N. Afsar, K.J. Button, Proc. IEEE 73, 131 (1985)

    Article  Google Scholar 

  19. SIGLO database http://www.lxcat.net, Retrieved on January 19, 2018

  20. G. Hagelaar, L. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005)

    Article  ADS  Google Scholar 

  21. Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991)

  22. K. Takahashi, K. Miyamoto, J. Phys.: Conf. Ser. 441, 012011 (2013)

    Google Scholar 

  23. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Z. Pai or Mark A. Cappelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, D.Z., Righetti, F., Wang, B.C. et al. Electron number density measurements from the frequency shift of a plasma defect state in a one-dimensional photonic crystal. Eur. Phys. J. D 73, 97 (2019). https://doi.org/10.1140/epjd/e2019-90617-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90617-y

Keywords

Navigation