Vibrationally-resolved excitation and dissociation collision strengths of AlO+ by electron-impact using the R-matrix method

  • Savinder KaurEmail author
  • Kasturi Lal BalujaEmail author
  • Jasmeet SinghEmail author
  • Anand BharadvajaEmail author
Regular Article


The electron-impact calculations are reported for excitation and dissociation of AlO+ ion using the R-matrix method. Calculations are performed in the static-exchange (SE) and close-coupling (CC) approximation. Each target state in CC approximation is represented by a configuration interaction (CI) wavefunction that takes into account the correlation and polarisation effects. In CC approximation 14-target states are included in the trial wavefunction of the entire scattering system. Potential energy curves (PECs) for the first four low-lying states are generated using the basis functions 6-311G* wherein we obtain X1Σ+ as the ground state contrary to a3Π as stated elsewhere in literature. Scattering calculations are then performed to yield vibrationally-resolved electronic excitation collision strengths to the first three lowest excited states a3Π, A1Π and b3Σ+. Using more accurate PECs we calculated the Franck–Condon factors which were then employed to get the vibrationally-resolved electronic excitations and dissociation collision strengths for the fragment channel Al++O of the lowest three excited states a3Π, A1Π and b3Σ+. All scattering calculations are performed at the experimental bond length 1.6178 Å of AlO+. Rotational excitation cross sections (0→j, j = 1, 2 … 5) have also been calculated and the corresponding rate coefficients have been evaluated for excitation and de-excitation by using the Maxwellian distribution function for electron temperature upto 5000 K. There are many Feshbach resonances detected in this work. We have analysed only the low-lying resonances below the excitation threshold of A1Π excited state. Beyond this threshold the resonance structure is too complex to analyse due to many overlapping resonances.

Graphical abstract


Atomic and Molecular Collisions 


  1. 1.
    S. Petrie, Environ. Chem. 2, 308 (2005)CrossRefGoogle Scholar
  2. 2.
    P.B. Armentrout, L.F. Halle, J.L. Beauchamp, J. Chem. Phys. 76, 2449 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    D.E. Clemmer, M.E. Weber, P.B. Armentrout, J. Phy. Chem. 96, 10888 (1992)CrossRefGoogle Scholar
  4. 4.
    M.E. Weber, J.L. Elkind, P.B. Armentrout, J. Chem. Phys. 84, 1521 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    J. Schamps, Chem. Phys. 2, 352 (1973)CrossRefGoogle Scholar
  6. 6.
    A. Marquez, M.J. Capitan, J.A. Odriozola, J.F. Sanz, Int. J. Quantum Chem. 52, 1329 (1994)CrossRefGoogle Scholar
  7. 7.
    P.J. Knowles, H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    H.-J. Werner, P.J. Knowles, J. Chem. Phys. 89, 5803 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    G. Chambaud, P. Rosmus, M.L. Senent, P. Palmieri, Mol. Phys. 92, 399 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    O. Sghaier, R. Linguerri, M.M.A. Mogren, J.S. Francisco, M. Hochlaf, Astrophys. J. 826, 163 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    A. Maatouk, A. Ben Houria, O. Yazidi, N. Jaidane, M. Hochlaf, J. Chem. Phys. 133 (2010) 144302ADSCrossRefGoogle Scholar
  12. 12.
    A. Zaidi, S. Lahmar, Z. Ben Lakhdar, P. Rosmus, J.-P. Flament, J. Mol. Struc. THEOCHEM 634, 299 (2003)CrossRefGoogle Scholar
  13. 13.
    V. Brites, D. Hammoutne, M. Hochlaf, J. Phys. Chem. A 112, 13419 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Kaur, K.L. Baluja, M. Bassi, Eur. Phys. J. D 71, 268 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    O. Launila, D.P.K. Banerjee, A&A 508, 1067 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    O. Launila, J. Jonsson, J. Mol. Spectrosc. 168, 1 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    L. Torrisi, F. Carridi, A. Picciotto, A. Borriethi, Nucl. Instrum. Methods Phys. Res. B 252, 183 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    M. Ying, Y. Xia, Y. Sun, M. Zhao, Y. Ma, X. Liu, Y. Li, X. Hon, Laser Part. Beams 21, 97 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    A. Gragossian, S.H. Tavassoli, B. Shokri, J. Appl. Phys. 105, 103304 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    D. Semkat, R. Redmer, Th Bornath, Phys. Rev. E 73, 066406 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    H. Hou, X. Mao, V. Zorba, R.E. Russo, Anal. Chem. 89, 7750 (2017)CrossRefGoogle Scholar
  22. 22.
    N. Gambino, Ph.D. thesis, Universita Degli Studi Di Catania, 2009Google Scholar
  23. 23.
    P.G. Burke, R-Matrix Theory of Atomic Collisions: Application to Atomic, Molecular and Optical Processes (Springer, 2011)Google Scholar
  24. 24.
    C.J. Gillan, J. Tennyson, P.G. Burke, in Computational Methods for Electron-Molecule Collisions, edited by W.M. Huo, F.A. Gianturco (Plenum, New York, 1995)Google Scholar
  25. 25.
    L.A. Morgan, C.J. Gillan, J. Tennyson, X. Chen, J. Phys. B: At., Mol. Opt. Phys. 30, 4087 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    L.A. Morgan, J. Tennyson, C.J. Gillan, Comput. Phys. Commun. 114, 120 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Carr, P.G. Galiatsatos, J.D. Gorfinkiel, A.G. Harvey, M.A. Lysaght, D. Madden, Z. Mašn, M. Plummer, J. Tennyson, H.N. Varambhia, Eur. Phys. J. D. 66, 58 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    A. Faure, J.D. Gorfinkiel, L.A. Morgan, J. Tennyson, Comput. Phys. Commun. 144, 224 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    B.M. Nestmann, K. Pfingst, S.D. Peyerimhoff, J. Phys. B: At., Mol. Opt. Phys. 27, 2297 (1994)ADSCrossRefGoogle Scholar
  30. 30.
  31. 31.
    R.J. Le Roy, J. Quant. Spectrosc. Radiat. Transfer 186, 167 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    J. Tennyson, C.J. Noble, Comput. Phys. Commun. 33, 421 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    K.L. Baluja, P.G. Burke, A.E. Kingston, J. Phys. B: At., Molec. Phys. 13, 829 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    W. Eissner, M.J. Seaton, J. Phys. B: At., Mol. Phys. 7, 2533 (1974)ADSCrossRefGoogle Scholar
  35. 35.
    I. Rabadan, J. Tennyson, Comput. Phys. Commun. 114, 129 (1998)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.SGTB Khalsa College, Department of Physics, University of DelhiDelhiIndia
  2. 2.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia
  3. 3.Keshav Mahavidyalaya, Department of Physics, University of DelhiDelhiIndia
  4. 4.Bhaskaracharya College of Applied Sciences, Department of Physics, University of DelhiNew DelhiIndia

Personalised recommendations