Skip to main content

Advertisement

Log in

Non-relativistic and relativistic investigation of the low lying electronic states of Sr2+Xe, Sr+Xe and SrXe systems

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The potential energy curves and permanent and transition dipole moments of the neutral SrXe and the ionic Sr+Xe systems are calculated with an ab initio approach using pseudopotential techniques, core polarization potentials, large Gaussian basis sets and full configuration interaction for two electron calculations. The spectroscopic constants of the ground state and lower excited states are in good agreement with the available experimental and theoretical works. The spin–orbit coupling is also included for the ionic system Sr+Xe and the neutral one SrXe. Its effect is significant on the potential energy curves, dipole moments and energy level spacing. For SrXe, the spin–orbit splitting has been considered for the states (2)3Σ0,1, (1,2)3Π0,1,2 and (1)3Δ0,1,2,3.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Plowright, T.J. McDonnell, T.G Wright, J.M.C. Plane, J. Phys. Chem. A 113, 9354 (2009)

    Article  Google Scholar 

  2. R.J. Plowright, T.G. Wright, J.M.C. Plane, J. Phys. Chem. A 112, 6550 (2008)

    Article  Google Scholar 

  3. R.A. Kumpf, D.A. Dougherty, Science 261, 1708 (1993)

    Article  ADS  Google Scholar 

  4. R.P. Andres, R.S. Averback, W.L. Brown, L.E. Brus, W.A. Goddard, A. Kaldor, S.G. Louie, M. Moscovits, P.S. Peercy, S.J. Riley, R.W. Siegel, F. Spaepen, Y. Wang, J. Mater. Res. 4, 704 (1989)

    Article  ADS  Google Scholar 

  5. M.A. Duncan, Annu. Rev. Phys. Chem. 48, 69 (1997)

    Article  ADS  Google Scholar 

  6. J.M. Farr, W.R. Hindmarsh, J. Phys. B: At. Mol. Phys. 4, 568 (1971)

    Article  ADS  Google Scholar 

  7. J.A. Gelbwars, Y.C. Chan, Opt. Lett. 16, 336 (1991)

    Article  ADS  Google Scholar 

  8. N.P. Penkin, L.N. Shabanova, Opt. Spectrosc. 25, 446 (1968)

    ADS  Google Scholar 

  9. H. Harima, T. Yanagisawa, K. Tachibana, Y. Urano, J. Phys. A: Math. Gen. 16, 4365 (1983)

    Google Scholar 

  10. Ch. Lüder, D. Prekas, A. Vourliotaki, M. Velegrakis, Chem. Phys. Lett. 267, 149 (1997)

    Article  ADS  Google Scholar 

  11. Ch. Lüder, M. Velegrakis, J. Chem. Phys. 105, 2167 (1996)

    Article  ADS  Google Scholar 

  12. D. Prekas, B.-H. Feng, M. Velegrakis, J. Chem. Phys. 108, 2712 (1998)

    Article  ADS  Google Scholar 

  13. M. Massaouti, A. Sfounis, M. Velegrakis, Chem. Phys. Lett. 348, 47 (2001)

    Article  ADS  Google Scholar 

  14. H. Harima, T. Ihara, Y. Urano, K. Tachibana, Phys. Rev. A 34, 2911 (1986)

    Article  ADS  Google Scholar 

  15. W. Baylis, J. Chem. Phys. 51, 2665 (1996)

    Article  ADS  Google Scholar 

  16. A. Giusti-Suzor, E. Roueff, J. Phys. B 8, 2708 (1975)

    Article  ADS  Google Scholar 

  17. E. Roueff, Astron. Astrophys. 7, 4 (1970)

    ADS  Google Scholar 

  18. A.M. Gardner, C.D. Withers, J.B. Graneek, T.G. Wright, L.A. Viehland, W.H. Breckenridge, J. Chem. Phys. 132, 054302 (2010)

    Article  ADS  Google Scholar 

  19. M. Mella, F. Cagnoni, J. Phys. Chem. A 118, 6473 (2014)

    Article  Google Scholar 

  20. G.P. Yin, P. Li, K.T. Tang, J. Chem. Phys. 132, 074303 (2010)

    Article  ADS  Google Scholar 

  21. Ph. Durand, J.C. Barthelat, Theor. Chem. Acta 38, 283 (1975)

    Article  Google Scholar 

  22. N. Mabrouk, H. Berriche, J. Phys. B: At. Mol. Phys. 41, 155101 (2008)

    Article  ADS  Google Scholar 

  23. F.X. Gadéa, H. Berriche, O. Roncero, P. Villarreal, G. Delgado Barrio, J. Chem. Phys. 07, 10515 (1997)

    Article  Google Scholar 

  24. H. Berriche, F.X. Gadea, Chem. Phys. Lett. 247, 85 (1995)

    Article  ADS  Google Scholar 

  25. N. Mabrouk, H. Berriche, H.B. Ouada, F.X. Gadea, J. Chem. Phys. A 114, 6657 (2010)

    Article  Google Scholar 

  26. H. Berriche, J. Mol. Struct.: THEOCHEM. 682, 89 (2004)

    Article  Google Scholar 

  27. W. Zrafi, B. Oujia, H. Berriche, F.X. Gadéa, J. Mol. Struct.: THEOCHEM 777, 87 (2006)

    Article  Google Scholar 

  28. R. ElOualhazi, H. Berriche, J. Phys. Chem. A 120, 452 (2016)

    Article  Google Scholar 

  29. W. Müller, J. Flesh, W. Meyer, J. Chem. Phys. 80, 3297 (1984)

    Article  ADS  Google Scholar 

  30. H. Coker, J. Phys. Chem. 80, 2078 (1976)

    Article  Google Scholar 

  31. A. Hibbert, K.L. Bell, K.A. Berrington, J. Phys. B: At. Mol. Phys. 20, L349 (1987)

    Article  ADS  Google Scholar 

  32. M. Foucrault, Ph. Millié, J.P. Daudey, J. Chem. Phys. 96, 1257 (1992)

    Article  ADS  Google Scholar 

  33. S. Belayouni, C. Ghanmi, H. Berriche, Can. J. Phys. 94, 791 (2016)

    Article  ADS  Google Scholar 

  34. J. Dhiflaoui, H. Berriche, M. Heaven, J. Phys. B: At. Mol. Phys. 49, 205101 (2016)

    Article  ADS  Google Scholar 

  35. H.J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, D.P. O’neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, MOLPRO,version 2010.1, a package of ab initio programs (2010). http://www.molpro.net (accessed December 26, 2015)

  36. K.T. Tang, J.P.J. Toennies, Chem. Phys. 80, 3726 (1984)

    ADS  Google Scholar 

  37. J.S. Cohen, B. Schneider, J. Chem. Phys. 61, 3230 (1974)

    Article  ADS  Google Scholar 

  38. J. Dhiflaoui, H. Berriche, J. Phys. Chem. A 114, 7139 (2010)

    Article  Google Scholar 

  39. J. Dhiflaoui, H. Berriche, M. Herbane, M.H. Al Sehimi, M.C. Heaven, J. Phys. Chem. A 116, 10589 (2012)

    Article  Google Scholar 

  40. H. Berriche, Int. J. Quantum Chem. 113, 1349 (2013)

    Article  Google Scholar 

  41. M. Bejaoui, J. Dhiflaoui, N. Mabrouk, R. Eloualhazi, H. Berriche, J. Chem. Phys. A 120, 747 (2016)

    Article  Google Scholar 

  42. J. Dhiflaoui, M. Bejaoui, H. Berriche, Eur. Phys. J. D 71, 331 (2017)

    Article  ADS  Google Scholar 

  43. C. Teichteil, M. Pelissier, F. Spiegelmann, Chem. Phys. 81, 273 (1983)

    Article  Google Scholar 

  44. F. Spiegelmann, L. Maron, W.H. Breckenridge, J.-M. Mestdag, J.-P. Visticot, J. Chem. Phys. 117, 7534 (2002)

    Article  ADS  Google Scholar 

  45. S. Saidi, N. Alharzali, H. Berrich, J. Phys. B: At. Mol. Phys. 115, 931 (2017)

    Google Scholar 

  46. Y. Ralchenko, A.E. Kramida, J. Reader, NIST Atomic Spectra Database (version 3.1.4) (National Institute of Standards and Technology, Gaithersburg, MD, USA, 2008). http://physics.nist.gov/asd3 (accessed December 26, 2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Berriche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zrafi, W., Bejaou, M., Dhiflaoui, J. et al. Non-relativistic and relativistic investigation of the low lying electronic states of Sr2+Xe, Sr+Xe and SrXe systems. Eur. Phys. J. D 73, 60 (2019). https://doi.org/10.1140/epjd/e2019-90564-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90564-7

Keywords

Navigation