Ozone yield limit in low temperature plasmas based on thermodynamics

  • Linsheng WeiEmail author
  • Haizhong Deng
  • Gabriele Neretti
  • Yafang Zhang
Regular Article


To investigate ozone yield limit in low temperature plasmas, a detailed thermodynamic model is developed to calculate theoretical ozone yield for the first time. Theoretical ozone yield is calculated both from overall reaction and detailed reactions. In the former case, the highest theoretical ozone yield of 1211 ± 2 g kWh−1 is obtained when final gas temperature equals the initial one, and all energy is effectively utilized to synthesize ozone. When final gas temperature is not equal to the initial one, theoretical ozone yield increases with the increase of oxygen admixture ratio and oxygen conversion ratio as well as the decrease of final gas temperature. Theoretical ozone yields are 921.22 g kWh−1 and 487.54 g kWh−1 in pure oxygen and in synthetic air respectively at final gas temperature of 400 K and oxygen conversion ratio of 10%. When detailed reactions and electron energy distribution function is considered, theoretical ozone yield rapidly increases by enhancing reduced field. Oxygen admixture ratio also has non-negligible effects on ozone yield. A higher oxygen admixture ratio leads to higher energy efficiency. The theoretical ozone yields are 238.92 g kWh−1 and 191.14 g kWh−1 in pure oxygen and in synthetic air at reduced field of 300 Td respectively.

Graphical abstract


Plasma Physics 


  1. 1.
    S. Ognier, D. Iya-sou, C. Fourmond, S. Cavadias, Plasma Chem. Plasma Process. 29, 261 (2009)CrossRefGoogle Scholar
  2. 2.
    Y.S. Mok, J.O. Jo, H.J. Lee, Plasma Sci. Technol. 10, 100 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M.J. Pavlovich, H.W. Chang, Y. Sakiyama, D.S. Clark, D.B. Graves, J. Phys. D: Appl. Phys. 46, 1152 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Dufresne, A. Hewitt, S. Robitaille, Am. J. Infect. Control 32, 26 (2004)CrossRefGoogle Scholar
  5. 5.
    S. Barman, L. Philip, Environ. Sci. Technol. 40, 1035 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Z.H. Wang, J.H. Zhou, J.R. Fan, K.F. Cen, Energy Fuels 20, 2432 (2006)CrossRefGoogle Scholar
  7. 7.
    Y. Magara, M. Itoh, T. Morioka, Prog. Nucl. Energy 29, 175 (1995)CrossRefGoogle Scholar
  8. 8.
    J.G. Kim, A.E. Yousef, M.A. Khadre, Adv. Food. Nutr. Res. 45, 167 (2003)CrossRefGoogle Scholar
  9. 9.
    J. Din, H.R.J. Cai, Q. Zhong, J.D. Lin, J.J. Xiao, S.L. Zhang, M.H. Fan, J. Hazard. Mater. 311, 218 (2016)CrossRefGoogle Scholar
  10. 10.
    J.S. Chang, P.A. Lawless, T. Yamamoto, IEEE Trans. Plasma Sci. 19, 1152 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    W.J.M. Samaranayake, Y. Miyahara, T. Namihira, S. Katsuki, R. Hackam, H. Akiyama, IEEE Trans. Dielectr. Electr. Insul. 7, 849 (2000)CrossRefGoogle Scholar
  12. 12.
    J. Ozonek, M. Wronski, I. Pollo, Polish J. Chem. Technol. 2, 19 (2000)Google Scholar
  13. 13.
    B. Eliasson, U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 309 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003)CrossRefGoogle Scholar
  15. 15.
    G.J. Pietsch, V.I. Gibalov, Pure Appl. Chem. 70, 1169 (1998)CrossRefGoogle Scholar
  16. 16.
    T. Kimura, Y. Hattori, A. Oda, Jpn. J. Appl. Phys. 43, 7689 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Nakata, R. Mabuchi, K. Tereanishi, N. Shimomura, IEEE Trans. Dielectr. Electr. Insul. 20, 1146 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.M. Sung, T. Sakoda, Surf. Coat. Technol. 197, 148 (2005)CrossRefGoogle Scholar
  19. 19.
    National Institute of Standards and Technology NIST Chemistry Webbook Database (Accessed 18 December 2017) Google Scholar
  20. 20.
    L.S. Wei, B. Pongrac, Y.F. Zhang, X. Liang, V. Prukner and M. Simek, Plasma Chem. Plasma Process. 38, 355 (2018)CrossRefGoogle Scholar
  21. 21.
    B. Eliasson, M. Hirth, U. Kogelschatz, J. Phys. D: Appl. Phys. 20, 1421 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    B. Eliasson, U. Kogelschatz, J. Phys. B: At., Mol. Phys. 19, 1241 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    L.S. Wei, M. Xu, Y.F. Zhang, Ozone Sci. Eng. 39, 33 (2017)CrossRefGoogle Scholar
  24. 24.
    U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003)CrossRefGoogle Scholar
  25. 25.
    B. Eliasson, U. Kogelschatz, P. Baessler, J. Phys. B: At., Mol. Phys. 17, 797 (1984)ADSCrossRefGoogle Scholar
  26. 26.
    P.C. Cosby, J. Chem. Phys. 98, 9544 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    M.W. Chase, NIST-JANAF Thermodynamic Tables (American Chemical Society and the American Institute of Physics, Woodbury, N.Y., 1998)Google Scholar
  28. 28.
    L.S. Wei, M. Xu, Y.F. Zhang, Z.J. Hu, High Voltage Eng. 42, 745 (2016)Google Scholar
  29. 29.
    J. Chen, J.H. Davidson, Plasma Chem. Plasma Process. 22, 495 (2002)CrossRefGoogle Scholar
  30. 30.
    Y.P. Riazer, Gas Discharge Physics , 1st edn., edited by J.E. Allen (Springer, New York, 1997).Google Scholar
  31. 31.
    Y.F. Zhang, X. Liang, M. Xu, L.S. Wei, Ozone Sci. Eng. 40, 1 (2018)CrossRefGoogle Scholar
  32. 32.
    D. Braun, G. Pietsch, in Proceedings of the 11th Ozone World Congress, San Francisco, 1993, p. 20Google Scholar
  33. 33.
    U. Kogelschatz, B. Eliasson, M. Hirth, Ozone Sci. Eng. 10, 367 (1988)CrossRefGoogle Scholar
  34. 34.
    G. Neretti, M. Taglioli, G. Colonna, C.A. Borghi, Plasma Sources Sci. Technol. 26, 1 (2017)Google Scholar
  35. 35.
    LXCat Team, The LXCat Database. (Accessed 20 March, 2017)Google Scholar
  36. 36.
    K. Takaki, Y. Hatanaka, K. Arima, S. Mukaigawa, T. Fujiwara, Vacuum. 83, 128 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    T.J. Manning, Ozone Sci. Eng. 22, 53 (2000)CrossRefGoogle Scholar
  38. 38.
    D.K. Yuan, Z.H. Wang, C. Ding, Y. He, R. Whiddon, K.F. Cen, J. Phys. D: Appl. Phys. 49, 1 (2016)CrossRefGoogle Scholar
  39. 39.
    Y.M. Sung, T. Sakoda, Surf. Coat. Technol. 197, 148 (2005)CrossRefGoogle Scholar
  40. 40.
    Y. Nomoto, T. Ohkubo, S. Kanazawa, T. Adachi, IEEE Trans. Ind. Appl. 31, 1458 (1995)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Linsheng Wei
    • 1
    Email author
  • Haizhong Deng
    • 1
  • Gabriele Neretti
    • 2
  • Yafang Zhang
    • 1
  1. 1.Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang UniversityNanchangP.R. China
  2. 2.Electrical, Electronic and Information Engineering Department, University of BolognaBolognaItaly

Personalised recommendations