Skip to main content
Log in

Renormalization of radiobiological response functions by energy loss fluctuations and complexities in chromosome aberration induction: deactivation theory for proton therapy from cells to tumor control

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We employ a multi-scale mechanistic approach built upon our recent phenomenological/computational methodologies [R. Abolfath et al., Sci. Rep. 7, 8340 (2017)] to investigate radiation induced cell toxicities and deactivation mechanisms as a function of linear energy transfer in hadron therapy. Our theoretical model consists of a system of Markov chains in microscopic and macroscopic spatio-temporal landscapes, i.e., stochastic birth-death processes of cells in millimeter-scale colonies that incorporates a coarse-grained driving force to account for microscopic radiation induced damage. The coupling, hence the driving force in this process, stems from a nano-meter scale radiation induced DNA damage that incorporates the enzymatic end-joining repair and mis-repair mechanisms. We use this model for global fitting of the high-throughput and high accuracy clonogenic cell-survival data acquired under exposure of the therapeutic scanned proton beams, the experimental design that considers γ-H2AX as the biological endpoint and exhibits maximum observed achievable dose and LET, beyond which the majority of the cells undergo collective biological deactivation processes. An estimate to optimal dose and LET calculated from tumor control probability by extension to ~106 cells per mm-size voxels is presented. We attribute the increase in degree of complexity in chromosome aberration to variabilities in the observed biological responses as the beam linear energy transfer (LET) increases, and verify consistency of the predicted cell death probability with the in vitro cell survival assay of approximately 100 non-small cell lung cancer (NSCLC) cells. The present model provides an interesting interpretation to variabilities in α and β indices via perturbative expansion of the cell survival fraction (SF) in terms of specific and lineal energies, z and y, corresponding to continuous transitions in pair-wise to ternary, quaternary and more complex recombination of broken chromosomes from the entrance to the end of the range of proton beam.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J. Hall, A.J. Giaccia, Radiobiology for the Radiologist, 6th edn. (Lippincott Williams & Wilkins, Philadelphia, 2006)

  2. D.R. Olsen, O.S. Bruland, G. Frykholm, I.N. Nordergaug, Radiother. Oncol. 83, 123 (2007)

    Article  Google Scholar 

  3. D. Schardt, T. Elsässer, D. Schulz-Ertner, Rev. Mod. Phys. 82, 383 (2010)

    Article  ADS  Google Scholar 

  4. M. Durante, H. Paganetti, Rep. Prog. Phys. 79, 096702 (2016)

    Article  ADS  Google Scholar 

  5. S.M. MacDonald, T.F. Delaney, J.S. Loefïer, Cancer Investig. 24, 199 (2006)

    Article  Google Scholar 

  6. R.M. Abolfath, D.J. Carlson, Z. Chen, R. Nath, Phys. Med. Biol. 58, 7143 (2013)

    Article  Google Scholar 

  7. M. Toulemonde, E. Surdutovich, A.V. Solov’yov, Phys. Rev. E 80, 031913 (2009)

    Article  ADS  Google Scholar 

  8. E. Surdutovich, A.V. Solov’yov, Phys. Rev. E 82, 051915 (2010)

    Article  ADS  Google Scholar 

  9. A.V. Solov’yov, ed., Nanoscale Insights into Ion-Beam Cancer Therapy (Springer, 2017)

  10. E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 68, 353 (2014)

    Article  ADS  Google Scholar 

  11. A. Verkhovtsev, E. Surdutovich, A.V. Solov’yov, Sci. Rep. 6, 27654 (2015)

    Article  ADS  Google Scholar 

  12. V.S.K. Manem, M. Kohandel, D.C. Hodgson, M.B. Sharpe, S. Sivaloganathan, Int. J. Radiat. Biol. 91, 209 (2015)

    Article  Google Scholar 

  13. F. Guan, L. Bronk, U. Titt, S.H. Lin, D. Mirkovic, M.D. Kerr, X.R. Zhu, J. Dinh, M. Sobieski, C. Stephan, C.R. Peeler, R. Taleei, R. Mohan, D.R. Grosshans, Sci. Rep. 5, 9850 (2015)

    Article  Google Scholar 

  14. J.J. Butts, R. Katz, Radiat. Res. 30, 855 (1967)

    Article  ADS  Google Scholar 

  15. R. Katz et al., Radiat. Res. 47, 402 (1971)

    Article  ADS  Google Scholar 

  16. G. Kraft, Part. Nucl. Phys. 45, S473 (2000)

    Article  ADS  Google Scholar 

  17. H. Paganetti, M. Goitein, Int. J. Radiat. Biol. 77, 911 (2001)

    Article  Google Scholar 

  18. T. Elsasser et al., Int. J. Radiat. Oncol. Biol. Phys. 78, 1177 (2010)

    Article  Google Scholar 

  19. R.B. Hawkins, Med. Phys. 25, 1157 (1998)

    Article  Google Scholar 

  20. R.B. Hawkins, Radiat. Res. 160, 61 (2003)

    Article  ADS  Google Scholar 

  21. Y. Kase et al., Radiat. Res. 166, 629 (2006)

    Article  ADS  Google Scholar 

  22. M. Krämer, O. Jakel, T. Haberer, G. Kraft, D. Schardt, U. Weber, Phys. Med. Biol. 45, 3299 (2000)

    Article  Google Scholar 

  23. M. Krämer, M.M. Scholz, Phys. Med. Biol. 45, 3319 (2000)

    Article  Google Scholar 

  24. M. Scholz, A.M. Kellerer, W. Kraft-Weyrather, G. Kraft, Radiat. Environ. Biophys. 36, 59 (1997)

    Article  Google Scholar 

  25. W.K. Weyrather, S. Ritter, M. Scholz, G. Kraft, Int. J. Radiat. Biol. 75, 1357 (1999)

    Article  Google Scholar 

  26. J.J. Wilkens, U. Oelfke, Phys. Med. Biol. 49, 2811 (2004)

    Article  Google Scholar 

  27. G.J. Neary, Int. J. Radiat. Biol. 9, 477 (1965)

    Google Scholar 

  28. O. Steinsträter, U. Scholz, T. Friedrich, M. Krämer, R. Grün, M. Durante, M. Scholz, Phys. Med. Biol. 60, 6811 (2015)

    Article  Google Scholar 

  29. A.L. McNamara, J. Schuemann, H. Paganetti, Phys. Med. Biol. 60, 8399 (2015)

    Article  Google Scholar 

  30. S.B. Curtis, Radiat. Res. 106, 252 (1986)

    Article  ADS  Google Scholar 

  31. R.K. Sachs, P. Hahnfeldt, D.J. Brenner, Int. J. Radiat. Biol. 72, 351 (1997)

    Article  Google Scholar 

  32. O. Steinstrater, R. Grun, U. Scholz, T. Friedrich, M. Durante, M. Scholz, Int. J. Radiat. Oncol. Biol. Phys. 84, 854 (2012)

    Article  Google Scholar 

  33. D.J. Carlson, R.D. Stewart, V.A. Semenenko, G.A. Sandison, Radiat. Res. 169, 447 (2008)

    Article  ADS  Google Scholar 

  34. M.C. Frese, V.K. Yu, R.D. Stewart, D.J. Carlson, Int. J. Radiat. Oncol. Biol. Phys. 83, 442 (2012)

    Article  Google Scholar 

  35. R.D. Stewart, S.W. Streitmatter, D.C. Argento, C. Kirkby, J.T. Goorley, G. Moffitt, T. Jevremovic, G.A. Sandison, Phys. Med. Biol. 60, 8249 (2015)

    Article  Google Scholar 

  36. R. Mohan, C.R. Peeler, F. Guan, L. Bronk, W. Cao, D.R. Grosshans, Acta Oncol. 56, 1367 (2017)

    Article  Google Scholar 

  37. R.M. Abolfath, A.C.T. van Duin, T. Brabec, J. Phys. Chem. A 115, 11045 (2011). See the real-time simulations and movies at: https://doi.org/qmsimulator.wordpress.com/

    Article  Google Scholar 

  38. R. Abolfath, L. Bronk, Y. Helo, J. Schuemann, U. Titt, D. Grosshans, R. Mohan, Med. Phys. 43, 3842 (2016)

    Article  Google Scholar 

  39. W. Friedland, E. Schmitt, P. Kundrat, M. Dingfelder, G. Baiocco, S. Barbieri, A. Ottolenghi, Sci. Rep. 7, 45161 (2017)

    Article  ADS  Google Scholar 

  40. S. Meylan, S. Incerti, M. Karamitros, N. Tang, M. Bueno, I. Clairand, C. Villagrasa, Sci. Rep. 7, 11923 (2017)

    Article  ADS  Google Scholar 

  41. R. Abolfath, C.R. Peeler, M. Newpower, L. Bronk, D. Grosshans, R. Mohan, Sci. Rep. 7, 8340 (2017)

    Article  ADS  Google Scholar 

  42. P. Kundrat, M. Lokajicek, H. Hromcikova, Phys. Med. Biol. 50, 1433 (2005)

    Article  Google Scholar 

  43. P. Kundrat, Phys. Med. Biol. 51, 1185 (2006)

    Article  Google Scholar 

  44. H. Nikjoo, D. Emfietzoglou, T. Liamsuwan, R. Taleei, D. Liljequist, S. Uehara, Rep. Prog. Phys. 79, 116601 (2016)

    Article  ADS  Google Scholar 

  45. W. Friedland, M. Dingfelder, P. Kundrat, P. Jacob, Mutat. Res. 28, 711 (2011)

    Google Scholar 

  46. R.K. Sachs, D.J. Brenner, A.M. Chen, P. Hahnfeldt, L.R. Hlatky, Radiat. Res. 148, 330 (1997)

    Article  ADS  Google Scholar 

  47. F. Ballarini, A. Ottolenghi, Cytogenet. Genome Res. 104, 149 (2004)

    Article  Google Scholar 

  48. W. Friedland, P. Jacob, P. Kundrat, Radiat. Res. 173, 677 (2010)

    Article  ADS  Google Scholar 

  49. W. Friedland, P. Kundrat, Mutat. Res. 756, 213 (2013)

    Article  Google Scholar 

  50. A.M. Kellerer, H.H. Rossi, Curr. Top. Radiat. Res. Q. 8, 85 (1972)

    Google Scholar 

  51. S. Incerti et al., Int. J. Modell. Simul. Sci. Comput. 1, 157 (2010)

    Article  Google Scholar 

  52. F. Mandl, G. Shaw, Quantum Field Theory, 2nd edn. (Wiley, 2013)

  53. R.P. Virsik, D. Harder, Radiat. Res. 85, 13 (1981)

    Article  ADS  Google Scholar 

  54. E. Gudowska-Nowak, S. Ritter, G. Taucher-Scholz, G. Kraft, Acta Phys. Pol. B 31, 1109 (2000)

    ADS  Google Scholar 

  55. N. Albright, Radiat. Res. 118, 1 (1989)

    Article  ADS  Google Scholar 

  56. N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (Amsterdam, North-Holland, 2007)

  57. J.W. Negele, H. Orland, in Quantum Many-particle Systems, Frontiers in Physics Series (Addison Wesley, 1987), Vol. 68

  58. P. Ramond, in Field Theory: A Modern Primer, Frontiersin Physics Series (Addison Wesley 1990), Vol. 74

  59. M. Kardar, Statistical Physics of Fields (Cambridge, 2007)

  60. R.M. Abolfath, Phys. Rev. B 58, 2013 (1998)

    Article  ADS  Google Scholar 

  61. H.H. Rossi, M. Zaider, Microdosimetry and Its Applications (Springer, 1996)

  62. A.M. Kellerer, Fundamentals of microdosimetry, in The Dosimetry of Ionizing Radiation, edited by K.R. Kase et al. (Academic, London, 1985), Vol. 1, pp. 77–161

  63. J.J. Sakurai, J.J. Napolitano, Modern Quantum Mechanics, 2nd edn. (Pearson, 2014)

  64. O.N. Vassiliev, Int. J. Radiat. Oncol. Biol. Phys. 83, 1311 (2012)

    Article  Google Scholar 

  65. O.N. Vassiliev, D.R. Grosshans, R. Mohan, Phys. Med. Biol. 62, 8041 (2017)

    Article  Google Scholar 

  66. L.D.J. Landau, J. Phys. (USSR) 8, 482 (1944)

    Google Scholar 

  67. P.V. Vavilov, Sov. Phys. JETP 5, 749 (1957)

    Google Scholar 

  68. S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  69. A.M. Kellerer, D. Chmelevsky, Radiat. Environ. Biophys. 12, 205 (1975)

    Article  Google Scholar 

  70. B. Grosswendt, Radiat. Prot. Dosim. 115, 1 (2005)

    Article  Google Scholar 

  71. M.A. Cortes-Giraldo, A. Carabe, Phys. Med. Biol. 60, 2645 (2015)

    Article  Google Scholar 

  72. M. Zaider, G.N. Minerbo, Phys. Med. Biol. 45, 279 (2000)

    Article  Google Scholar 

  73. L.E. Reichl, A Modern Course in Statistical Physics, 4th edn. (Wiley-, Verlag, 2009)

  74. L.D. Landau, E.M. Lifshitz, Mechanics, in A Course of Theoretical Physics (Pergamon Press, 1969), Vol. 1

  75. H. Akima, U.S. Department of Commerce, Office of Telecommunications, 1975

  76. L. Bronk et al., Med. Phys. 44, 2670 (2017)

    Google Scholar 

  77. H. Akima, J. ACM 17, 589 (1970)

    Article  Google Scholar 

  78. W. Tinganelli, M. Durante, R. Hirayama, M. Krämer, A. Maier, W. Kraft-Weyrather, Y. Furusawa, T. Friedrich, E. Scifoni, Sci. Rep. 5, 17016 (2015)

    Article  ADS  Google Scholar 

  79. M. Krämer, E. Scifoni, F. Schmitz, O. Sokol, M. Durante, Eur. Phys. J. D 68, 306 (2014)

    Article  ADS  Google Scholar 

  80. N. Bassler, J. Toftegaard, A. Lühr, B.S. Sorensen, E. Scifoni, M. Krämer, O. Jäkel, L.S. Mortensen, J. Overgaard, J.B. Petersen, Acta Oncol. 53, 25 (2014)

    Article  Google Scholar 

  81. F. Guan, C. Peeler, L. Bronk, C. Geng, R. Taleei, S. Randeniya, S. Ge, D. Mirkovic, D. Grosshans, R. Mohan, U. Titt, Med. Phys. 42, 6234 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Abolfath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolfath, R., Helo, Y., Bronk, L. et al. Renormalization of radiobiological response functions by energy loss fluctuations and complexities in chromosome aberration induction: deactivation theory for proton therapy from cells to tumor control. Eur. Phys. J. D 73, 64 (2019). https://doi.org/10.1140/epjd/e2019-90263-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90263-5

Keywords

Navigation