Skip to main content
Log in

Electron acoustic envelope solitons in non-Maxwellian plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The NASA Van Allen Probes spacecraft has recently observed broadband electrostatic turbulence in the inner magnetosphere which has been conjectured to be produced by large amplitude electrostatic solitary waves of generally two types [D.M. Malaspina, J.R. Wygant, R.E. Ergun, G.D. Reeves, R.M. Skoug, B.A. Larsen, J. Geophys. Res.: Space Phys. 120, 4246 (2015); C.S. Dillard, I.Y. Vasko, F.S. Mozer, O.V. Agapitov, J.W. Bonnell, Phys. Plasmas 25, 022905, (2018)]. The solitary waves with highly asymmetric bipolar parallel electric field have been recently shown to correspond to the electron-acoustic plasma mode (existing due to two-temperature electron population) [C.S. Dillard, I.Y. Vasko, F.S. Mozer, O.V. Agapitov, J.W. Bonnell, Phys. Plasmas 25, 022905, (2018)]. These findings along with the observations of non-Maxwellian electrons in terrestrial magnetosheath and planetary magnetospheres [W. Masood, S.J. Schwartz, M. Maksimovic, A.N. Fazakerley, Ann. Geophys. 24, 1725 (2006); W. Masood, S.J. Schwartz, J. Geophys. Res. 113, A01216 (2008); M.N.S. Qureshi, W. Nasir, W. Masood, P.H. Yoon, H.A. Shah, S.J. Schwartz, J. Geophys. Res.: Space Phys. 119, 10059 (2014); M.N.S. Qureshi, W. Nasir, R. Bruno, W. Masood, MNRAS 488, 954 (2019)] have prompted us to theoretically investigate the problem of amplitude modulation of the electron acoustic waves (EAWs) in plasmas whose ingredients are stationary ions, inertial cold electrons and warm (r,q) distributed inertialess electrons. The nonlinear Schrödinger equation (NLSE) that governs the modulational instability (MI) of the EAWs has been derived using the standard reductive perturbation technique (RPT). The presence of the warm (r,q) distributed electrons has been shown to influence the existence conditions of MI of the EAWs and both the indices have been found to cause a decrease in the growth rate of MI. A detailed comparison has also been drawn between double spectral index (r,q), kappa and Maxwellian distribution functions and the differences are highlighted. Additionally, the nondimensional parameter α=nc0/ne0 which is the equilibrium density ratio of the cold to hot electron component, has been shown to play an important role in the formation of envelope solitary excitations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Esfandyari-Kalejahi, H. Asgari, Phys. Plasmas 12, 102302 (2005)

    ADS  Google Scholar 

  2. M. Mohan, B. Buti, Plasma Phys. 21, 713 (1979)

    ADS  Google Scholar 

  3. X. Bai-song, H. Kai-fen, Chin. Phys. 10, 214 (2001)

    Google Scholar 

  4. S.K. El-Labany, W.F. El-Taibany, Phys. Plasmas 10, 989 (2003)

    ADS  Google Scholar 

  5. B.D. Fried, R.W. Gould, Phys. Fluids 4, 139 (1961)

    ADS  MathSciNet  Google Scholar 

  6. P.K. Shukla, L. Stenflo, M.A. Hellberg, Phys. Rev. E 66, 027403 (2002)

    ADS  Google Scholar 

  7. R.L. Tokar, S.P. Gary, Geophys. Res. Lett. 11, 1180 (1984)

    ADS  Google Scholar 

  8. V. Singh, G.S. Lakhina, Planet. Space Sci. 49, 107 (2001)

    ADS  Google Scholar 

  9. F. Anderegg, C.F. Driscoll, D.H.E. Dubin, T.M. O’Neil, F. Valentini, Phys. Plasmas 16, 055705 (2009)

    ADS  Google Scholar 

  10. M.A. Hellberg, R.L. Mace, R.J. Armstrong, G. Karlstad, J. Plasma Phys. 64, 433 (2000)

    ADS  Google Scholar 

  11. S. Chowdhury, S. Biswas, N. Chakrabarti, R. Pal, Phys. Plasmas 24, 062111 (2017)

    ADS  Google Scholar 

  12. N. Dubouloz, R. Pottelette, M. Malingre, R.A. Treumann, Geophys. Res. Lett. 18, 155 (1991)

    ADS  Google Scholar 

  13. R. Pottelette, R.E. Ergun, R.A. Treumann, M. Berthomier, C.W. Carlson, J.P. McFadden, I. Roth, Geophys. Res. Lett. 26, 2629 (1999)

    ADS  Google Scholar 

  14. H. Matsumoto, H. Kojima, T. Miyatake, Y. Omura, M. Okada, I. Nagano, M. Tsutsui, Geophys. Res. Lett. 21, 2915 (1994)

    ADS  Google Scholar 

  15. D. Schriver, M. Ashour-Abdalla, Geophys. Res. Lett. 16, 899 (1989)

    ADS  Google Scholar 

  16. D. Henry, R.A. Treumann, J. Plasma Phys. 8, 311 (1972)

    ADS  Google Scholar 

  17. K. Watanabe, T. Taniuti, J. Phys. Soc. Jpn. 43, 1819 (1977)

    ADS  Google Scholar 

  18. T.H. Stix, Waves in Plasma (AIP, New York, 1992)

  19. M. Berthomier, R. Pottelette, M. Malingre, Y. Khotyaintsev, Phys. Plasmas 7, 2987 (2000)

    ADS  Google Scholar 

  20. A.A. Mamun, P.K. Shukla, J. Geophys. Res. 107, 1135 (2002)

    Google Scholar 

  21. R. Sabry, M.A. Omran, Astrophys. Space Sci. 344, 455 (2013)

    ADS  Google Scholar 

  22. R.L. Mace, M.A. Hellberg, Phys. Plasmas 8, 2649 (2001)

    ADS  Google Scholar 

  23. A.A. Mamun, P.K. Shukla, L. Stenflo, Phys. Plasmas 9, 1474 (2002)

    ADS  MathSciNet  Google Scholar 

  24. P.K. Shukla, A.A. Mamun, B. Eliasson, Geophys. Res. Lett. 31, L07803 (2004)

    ADS  Google Scholar 

  25. S.K. El-Labany, M. Shalaby, R. Sabry, L.S. El-Sherif, Astrophys. Space Sci. 340, 101 (2012)

    ADS  Google Scholar 

  26. A.A. Abid, M.Z. Khan, Q. Lu, S.L. Yap, Phys. Plasmas 24, 33702 (2017)

    Google Scholar 

  27. V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968)

    ADS  Google Scholar 

  28. M.N.S. Qureshi, H.A. Shah, G. Murtaza, S.J. Schwartz, F. Mahmood, Phys. Plasmas 11, 3819 (2004)

    ADS  Google Scholar 

  29. S. Zaheer, G. Murtaza, H.A. Shah, Phys. Plasmas 11, 2246 (2004)

    ADS  Google Scholar 

  30. M.N.S. Qureshi, J.K. Shi, S.Z. Ma, Phys. Plasmas 12, 122902 (2005)

    ADS  Google Scholar 

  31. S. Zaheer, G. Murtaza, H.A. Shah, Phys. Plasmas 13, 62109 (2006)

    Google Scholar 

  32. Z. Kiran, H.A. Shah, M.N.S. Qureshi, G. Murtaza, Sol. Phys. 236, 167 (2006)

    ADS  Google Scholar 

  33. M.N.S. Qureshi, W. Nasir, W. Masood, P.H. Yoon, H.A. Shah, S.J. Schwartz, J. Geophys. Res.: Space Phys. 119, 10059 (2014)

    ADS  Google Scholar 

  34. W. Masood, S.J. Schwartz, M. Maksimovic, A.N. Fazakerley, Ann. Geophys. 24, 1725 (2006)

    ADS  Google Scholar 

  35. W. Masood, S.J. Schwartz, J. Geophys. Res. 113, A01216 (2008)

    ADS  Google Scholar 

  36. K.H. Shah, M.N.S. Qureshi, W. Masood, H.A. Shah, Phys. Plasmas 25, 042303 (2018)

    ADS  Google Scholar 

  37. S. Khalid, M.N.S. Qureshi, W. Masood, Astrophys. Space Sci. 363, 9 (2018)

    Google Scholar 

  38. J.E. Wahlund, P. Louam, T. Chust, H. de Feraudy, A. Roux, B. Holback, B. Cabrit, A.I. Eriksson, P.M. Kintner, M.C. Kelley, J. Bonnell, S. Chesney, Geophys. Res. Lett. 21, 1835 (1994)

    ADS  Google Scholar 

  39. M.N.S. Qureshi, W. Nasir, R. Bruno, W. Masood, MNRAS 488, 954 (2019)

    ADS  Google Scholar 

  40. S. Khalid, M.N.S. Qureshi, W. Masood, Phys. Plasmas 26, 092114 (2019)

    ADS  Google Scholar 

  41. I. Kourakis, P.K. Shukla, Phys. Rev. E 69, 036411 (2004)

    ADS  Google Scholar 

  42. H. Demiray, Phys. Plasmas 23, 032109 (2016)

    ADS  Google Scholar 

  43. R.L. Mace, G. Amery, M.A. Hellberg, Phys. Plasmas 6, 44 (1999)

    ADS  Google Scholar 

  44. T. Taniuti, N. Yajima, J. Math. Phys. 10, 1369 (1969)

    ADS  Google Scholar 

  45. N. Asano, T. Taniuti, N. Yajima, J. Math. Phys. 10, 2020 (1969)

    ADS  Google Scholar 

  46. M.R. Amin, G.E. Morfill, P.K. Shukla, Phys. Rev. E 58, 6517 (1998)

    ADS  Google Scholar 

  47. R. Fedele, H. Schamel, P.K. Sukla, Phys. Scr. T98, 18 (2002)

    ADS  Google Scholar 

  48. R. Fedele, H. Schamel, Eur. Phys. J. B 27, 313 (2002)

    ADS  Google Scholar 

  49. D.M. Malaspina, J.R. Wygant, R.E. Ergun, G.D. Reeves, R.M. Skoug, B.A. Larsen, J. Geophys. Res.: Space Phys. 120, 4246 (2015)

    ADS  Google Scholar 

  50. C.S. Dillard, I.Y. Vasko, F.S. Mozer, O.V. Agapitov, J.W. Bonnell, Phys. Plasmas 25, 022905 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakir Ullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, S., Masood, W. & Siddiq, M. Electron acoustic envelope solitons in non-Maxwellian plasmas. Eur. Phys. J. D 74, 26 (2020). https://doi.org/10.1140/epjd/e2019-100589-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100589-1

Keywords

Navigation