Skip to main content

High-energy ionizing radiation influence on the fragmentation of glutamine

Abstract

Both experimentally, by using the mass-spectrometric technique, and theoretically, by applying Becke’s three-parameter hybrid density functional approach, the yield of the ionic products of both single- and dissociative ionization of the glutamine molecule (C5H10N2O3) under high-energy (11.5 MeV) electron impact has been studied. The experimental mass spectra measured at different irradiation doses (i.e., 0, 5, 10, and 20 kGy) have been identified and analyzed. It has been shown that high-energy electrons cause irreversible changes in the structure of the molecule under study, accompanied by a transition to the zwitterionic/deprotonated form, which may cause a change in the fragment ion production at the interatomic distance variation. It has been shown that the yield of the low-mass fragments from the zwitterionic glutamine molecular structure may increase due to an increase in the isobaric ion yield.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Y. Hu, E.R. Bernstein, J. Chem. Phys. 128, 164311 (2008).

    ADS  Article  Google Scholar 

  2. 2.

    K.H. Ng, Non-ionizing radiations – sources, biological effects, emissions and exposures, in, 2003.

  3. 3.

    J.E. Moulder, Static electric and magnetic fields and human health, Ph.D. thesis, Medical College of Wisconsin, USA. Archived from the original on 2 September 2014, http://www.mcw.edu/radiationoncology/ourdepartment/radiationbiology/Static-Electric-and-Magnetic-F.htm, accessed on 16 th June, 2019

  4. 4.

    L. Yin, P. Vijaygopal, R. Menon, L.A. Vaught, M. Zhang, L. Zhang, P. Okunieff, S. Vidyasagar, Health Phys. 106, 734 (2014).

    Article  Google Scholar 

  5. 5.

    P. Siddhuraju, H.P.S. Makkar, K. Becker, Food Chem. 78, 187 (2002).

    Article  Google Scholar 

  6. 6.

    High-Dose Irradiation: Wholesomeness of Food Irradiated with Doses above 10 kGy, WHO Technical Report, Series No. 890, Geneva, 1999.

  7. 7.

    A.M. El Shazali, A. Isam, A. El Gasim, A. Yagoub, E.B. Elfadil, Int. J. Food Sci. Technol. 45, 906 (2010).

    Article  Google Scholar 

  8. 8.

    F. Cataldo, O. Ursini, G. Angelini, S. Iglesias-Groth, A. Manchado, Rend. Fis. Acc. Lincei. 22, 81 (2011).

    Article  Google Scholar 

  9. 9.

    C. Cherubini, O. Ursini, F. Cataldo, S. Iglesias-Groth, M.E. Crestoni, J. Radioanal. Nucl. Chem. 300, 1061 (2014).

    Article  Google Scholar 

  10. 10.

    C. Cherubini, O. Ursini, Springer Plus 4, 541 (2015).

    Article  Google Scholar 

  11. 11.

    E. Egidi, F. Sestili, M. Janni, R. D’Ovidio, D. Lafiandra, A. Ceriotti, W.H. Vensel, D.D. Kasarda, S. Masci, BMC Plant Biol. 14, 64 (2014).

    Article  Google Scholar 

  12. 12.

    H. Sarioglu, F. Lottspeich, T. Walk, G. Jung, C. Eckerskorn, Electrophoresis 21, 2209 (2000).

    Article  Google Scholar 

  13. 13.

    B. Boudaffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000).

    ADS  Article  Google Scholar 

  14. 14.

    J.F. Ward, in Advances in radiation biology, edited by J.T. Lett, H. Adler (Academic Press, New York, 1977), Vol. 5.

  15. 15.

    A. Sak, M. Stuschke, R. Wurm, V. Budach, Int. J. Radiat. Biol. 76, 749 (2000).

    Article  Google Scholar 

  16. 16.

    V. Vukstich, A. Imre, A. Snegursky, Instrum. Exp. Tech. 54, 207 (2011).

    Article  Google Scholar 

  17. 17.

    V. Vukstich, L. Romanova, I. Megela, A. Snegursky, Tech. Phys. Lett. 40, 263 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    A. Kraj, D.M. Desiderio, N.M. Nibbering, in Mass spectrometry: instrumentation, interpretation, and applications, edited by R. Ekman, J. Silberring, A. Westman-Brinkmalm (John Wiley & Sons, Hoboken, 2009).

  19. 19.

    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

    ADS  Article  Google Scholar 

  20. 20.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, et al., Gaussian 03, Revision C.02 (Gaussian Inc, Wallingford CT, 2004).

  21. 21.

    R.A. Kendall, T.H. Dunning Jr, R.J. Harrison, J. Chem. Phys. 96, 6796 (1992).

    ADS  Article  Google Scholar 

  22. 22.

    J. Tamuliene, L. Romanova, V. Vukstich, A. Papp, L. Baliulyte, A. Snegursky, Int. J. Mass Spectrom. 444, 116185 (2019).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

The authors contributed to this paper in the following proportion: Jelena Tamuliene (theoretical calculations, discussion of results) — 70%, Liudmila Romanova (discussion of results), Vasyl Vukstich (experimental measurements), and Alexander Snegursky (discussion of results) — 10% each.

Corresponding author

Correspondence to Jelena Tamuliene.

Additional information

Contribution to the Topical Issue “Low-Energy Positron and Positronium Physics and Electron-Molecule Collisions and Swarms (POSMOL 2019)”, edited by Michael Brunger, David Cassidy, Saša Dujko, Dragana Marić, Joan Marler, James Sullivan, Juraj Fedor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tamuliene, J., Romanova, L., Vukstich, V. et al. High-energy ionizing radiation influence on the fragmentation of glutamine. Eur. Phys. J. D 74, 13 (2020). https://doi.org/10.1140/epjd/e2019-100523-7

Download citation

Keywords

  • Atomic and Molecular Collisions