Skip to main content
Log in

Plasma diagnostic opportunities from a positron beam

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We investigate the suitability of using a positron beam to obtain information about low-temperature plasmas. We have simulated the propagation of positrons using a stochastic particle-track Monte Carlo simulation in an argon plasma. Our study focuses on the bulk of the plasma, including all the interactions of a positron with the neutral and charged particles of varying electron temperature and ionisation fraction. We interpret our results in the context of experimentally observable quantities and identify several potential signatures of the plasma parameters. Our results indicate that, even in a more complex experimental setup, the ionisation fraction and electron temperature should be able to be determined.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Adamovich, S.D. Baalrud, A. Bogaerts, et al., J. Phys. D: Appl. Phys. 50, 323001 (2017)

    Article  Google Scholar 

  2. P.J. Bruggeman, M.J. Kushner, B.R. Locke, et al., Plasma Sources Sci. Technol. 25, 053002 (2016)

    Article  ADS  Google Scholar 

  3. I.H. Hutchinson, Principles of Plasma Diagnostics. 2nd edn. (Cambridge University Press, 2002)

  4. T.J. Babij, J.R. Machacek, D.J. Murtagh, et al., Phys. Rev. Lett. 120, 113401 (2018)

    Article  ADS  Google Scholar 

  5. J.R. Danielson, D.H. Dubin, R.G. Greaves, et al., Rev. Mod. Phys. 87, 247 (2015)

    Article  ADS  Google Scholar 

  6. M.R. Natisin, J.R. Danielson, C.M. Surko, Appl. Phys. Lett. 108 (2016).

  7. M. Charlton, J.W. Humberston, Positron Physics, Cambridge Monographs on Atomic, Molecular and Chemical Physics (Cambridge University Press, 2000)

  8. Y.C. Jean, P.E. Mallon, D.M. Schrader, Principles and Applications of Positron and Positronium Chemistry (World Scientific, 2003)

  9. D.W. Gidley, H.-G. Peng, R.S. Vallery, Annu. Rev. Mater. Res. 36, 49 (2006)

    Article  ADS  Google Scholar 

  10. D.B. Graves, Phys. Plasmas 21, 080901 (2014)

    Article  ADS  Google Scholar 

  11. K.-D. Weltmann, T. von Woedtke, Plasma Phys. Controlled Fusion 59, 014031 (2017)

    Article  ADS  Google Scholar 

  12. C.M. Surko, M. Leventhal, W.S. Crane, et al., Rev. Sci. Instrum. 57, 1862 (1986)

    Article  ADS  Google Scholar 

  13. T.J. Murphy, Plasma Phys. Controlled Fusion 29, 549 (1987)

    Article  ADS  Google Scholar 

  14. T.S. Pedersen, J.R. Danielson, C. Hugenschmidt, et al., New J. Phys. 14, 035010 (2012)

    Article  ADS  Google Scholar 

  15. I.J. Lazarus, Electrostatic waves in magnetized electron-positron plasmas, , in Charged Particles (IntechOpen, 2018)

  16. M. Charlton, J. Phys.: Conf. Ser. 162, 012003 (2009)

    Google Scholar 

  17. S. Marjanović, A. Banković, R.D. White, et al., Plasma Sources Sci. Technol. 24, 025016 (2015)

    Article  ADS  Google Scholar 

  18. R. Robson, R. White, M. Hildebrandt, Fundamentals of Charged Particle Transport in Gases and Condensed Matter (CRC Press, London, 2017)

  19. W.J. Tattersall, D.G. Cocks, G.J. Boyle, et al., Plasma Sources Sci. Technol. 26, 045010 (2017)

    Article  ADS  Google Scholar 

  20. Z. Ristivojevic, Z.L. Petrović, Plasma Sources Sci. Technol. 21, 035001 (2012)

    Article  ADS  Google Scholar 

  21. S. Dujko, R.D. White, Z.L. Petrovic, J. Phys. D: Appl. Phys. 41, 245205 (2008)

    Article  ADS  Google Scholar 

  22. D.G. Cocks, H. Chaudhary, J.R. Machacek, Astrophys. J. 878, 123 (2019)

    Article  ADS  Google Scholar 

  23. H.R. Skullerud, J. Phys. D: Appl. Phys. 1, 1567 (1968)

    Article  ADS  Google Scholar 

  24. M. Šuvakov, Z.L. Petrović, J.P. Marler, et al., New J. Phys. 10, 053034 (2008)

    Article  ADS  Google Scholar 

  25. J.P. Marler, J.P. Sullivan, C.M. Surko, Phys. Rev. A 71, 1 (2005)

    Article  Google Scholar 

  26. L.A. Parcell, R.P. McEachran, A.D. Stauffer, Nucl. Instrum. Methods Phys. Res. Sect. B 171, 113 (2000)

    Article  ADS  Google Scholar 

  27. A.C.L. Jones, C. Makochekanwa, P. Caradonna, et al., Phys. Rev. A 83, 1 (2011)

    Google Scholar 

  28. J.P. Marler, L.D. Barnes, S.J. Gilbert, et al., Nucl. Instrum. Methods Phys. Res. Sect. B 221, 84 (2004)

    Article  ADS  Google Scholar 

  29. A.V. Bobylev, I.F. Potapenko, J. Comput. Phys. 246, 123 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Z.L. Petrović, I. Simonović, S. Marjanović, et al., Plasma Phys. Controlled Fusion 59, 014026 (2017)

    Article  ADS  Google Scholar 

  31. D.G. Green, Phys. Rev. Lett. 119, 2 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cocks.

Additional information

Contribution to the Topical Issue “Low-Energy Positron and Positronium Physics and Electron-Molecule Collisions and Swarms (POSMOL 2019)”, edited by Michael Brunger, David Cassidy, Saša Dujko, Dragana Marić, Joan Marler, James Sullivan, Juraj Fedor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyffenegger-Pere, Y., Cocks, D. Plasma diagnostic opportunities from a positron beam. Eur. Phys. J. D 74, 6 (2020). https://doi.org/10.1140/epjd/e2019-100479-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100479-6

Navigation