Skip to main content
Log in

Interaction of photoionisation and meteoric input in the atmosphere of Jupiter

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Interplanetary dust grains and meteoroids are assumed to deliver oxygen to the atmosphere of Jupiter. A current photochemical model overestimates the resultant density of water relative to an available measurement. This paper investigates whether the interaction of photoionisation and meteoric products can explain that discrepancy. As any process that breaks up water molecules is likely to produce hydroxyl, the predicted densities of hydroxyl are also investigated as a possible target for remote sensing. It is found that the densities of water are not changed by the addition of photoionisation, but that higher OH densities are predicted above about 400 km.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.I. Moses, T. Fouchet, B. Bézard, G.R. Gladstone, E. Lellouch, H. Feuchtgruber, J. Geophys. Res. 110, E08001 (2005)

    ADS  Google Scholar 

  2. J.I. Moses, A.R. Poppe, Icarus 297, 33 (2017)

    Article  ADS  Google Scholar 

  3. L. Campbell, M.J. Brunger, Icarus 326, 162 (2019)

    Article  ADS  Google Scholar 

  4. L. Campbell, M.J. Brunger, Int. Rev. Phys. Chem. 35, 297 (2016)

    Article  Google Scholar 

  5. R. Riahi, Ph Teulet, Z. Ben Lakhdar, A. Gleizes, Eur. Phys. J. D 40, 223 (2006)

    Article  ADS  Google Scholar 

  6. L. Campbell, M.J. Brunger, Planet Space Sci. 151, 11 (2018)

    Article  ADS  Google Scholar 

  7. V.L.K. Chakrabarti, J. Tennyson, Plasma Sources Sci. Technol. 28, 085013 (2019)

    Article  ADS  Google Scholar 

  8. Y.H. Kim, J.L. Fox, Icarus 112, 310 (1994)

    Article  ADS  Google Scholar 

  9. Y.H. Kim, W. Dean Pesnell, J.M. Grebowsky, J.L. Fox, Icarus 150, 161 (2001)

    Article  Google Scholar 

  10. Kinetic Database for Astrochemistry (KIDA), accessed 13 September 2019, http://kida.obs.u-bordeaux1.fr/

  11. G.R. Gladstone, M. Allen, Y.L. Yung, Icarus 119, 1 (1996)

    Article  ADS  Google Scholar 

  12. M.R. Torr, D.G. Torr, R.A. Ong, H.E. Hingeregger, Geophys. Res. Lett. 6, 771 (1979)

    Article  ADS  Google Scholar 

  13. S.C. Solomon, L. Qian, J. Geophys. Res. 110, A10306 (2005)

    Article  ADS  Google Scholar 

  14. Community Coordinated Modeling Center (CCMC), Accessed 6 June 2019, https://ccmc.gsfc.nasa.gov/pub/modelweb/solar/euv/ae-euv

  15. H.E. Hinteregger, K. Fukui, B.R. Gilson, Geophys. Res. Lett. 8, 1147 (1981)

    Article  ADS  Google Scholar 

  16. NIFS data base, Accessed 14 November 2014, http://dpc.nifs.ac.jp/photoab/atom/H/DBASE_H_table.txt

  17. J.A.R. Samson, G.N. Haddad, J. Opt. Soc. Am. B 11, 277 (1994)

    Article  ADS  Google Scholar 

  18. K. Kirby, E.R. Constantinides, S. Babeu, M. Oppenheimer, G.A. Victor, At. Data Nucl. Data Tables 23, 63 (1979)

    Article  ADS  Google Scholar 

  19. J.A.R. Samson, G.N. Haddad, T. Masuoka, P.N. Pareek, D.A.L. Kilcoyne, J. Chem. Phys. 90, 6925 (1989)

    Article  ADS  Google Scholar 

  20. J.A.R. Samson, Adv. At. Mol. Phys. 2, 177 (1996)

    Article  ADS  Google Scholar 

  21. T. Hayaishi, S. Iwata, M. Sasanuma, E. Ishiguro, Y. Morioka, Y. Iida, M. Nakamura, J. Phys. B: At. Mol. Phys. 15, 79 (1982)

    Article  ADS  Google Scholar 

  22. H. Kossman, O. Schwarzkopf, B. Kämmerling, W. Braun, V. Schmidt, J. Phys. B: At. Mol. Opt. Phys. 22, L411 (1989)

    Article  Google Scholar 

  23. C. Backx, G.R. Wright, M.H. Van der Wiel, J. Phys. B: At. Mol. Phys. 9, 315 (1976)

    Article  ADS  Google Scholar 

  24. L.A. Rogers, K.A. Hill, R.L. Hawkes, Planet. Space Sci. 53, 1341 (2005)

    Article  ADS  Google Scholar 

  25. T.E. Cravens, G.M. Eisenhower, Icarus 100, 260 (1992)

    Article  ADS  Google Scholar 

  26. K.M. Bodisch, L.P. Dougherty, F. Bagenal, J. Geophys. Res. Space Phys. 122, 8277 (2017)

    Article  ADS  Google Scholar 

  27. T. Majeed, J.C. McConnell, Planet. Space Sci. 39, 1715 (1991)

    Article  ADS  Google Scholar 

  28. R.V. Yelle, S. Miller, in Jupiter’s Thermosphere and Ionosphere (Cambridge University Press, 2004), p. 185

  29. A.J. Coates, F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite Jr, E.C. Sittler Jr, Geophys. Res. Lett. 34, L22103 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Campbell.

Additional information

Contribution to the Topical Issue “Low-Energy Positron and Positronium Physics and Electron-Molecule Collisions and Swarms (POSMOL 2019)”, edited by Michael Brunger, David Cassidy, Saša Dujko, Dragana Marić, Joan Marler, James Sullivan, Juraj Fedor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, L., Jones, D.B., White, R.D. et al. Interaction of photoionisation and meteoric input in the atmosphere of Jupiter. Eur. Phys. J. D 73, 252 (2019). https://doi.org/10.1140/epjd/e2019-100466-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100466-y

Navigation