A model of quantum collapse induced by gravity

Abstract

We discuss a model where a spontaneous quantum collapse is induced by the gravitational interactions, treated classically. Its dynamics couples the standard wave function of a system with the Bohmian positions of its particles, which are considered as the only source of the gravitational attraction. The collapse is obtained by adding a small imaginary component to the gravitational coupling. It predicts extremely small perturbations of microscopic systems, but very fast collapse of QSMDS (quantum superpositions of macroscopically distinct quantum states) of a solid object, varying as the fifth power of its size. The model does not require adding any dimensional constant to those of standard physics.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A.J. Leggett, Macroscopic quantum systems and the quantum theory of measurement, Suppl. Prog. Theor. Phys. 69, 80 (1980)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    A.J. Leggett, Probing quantum mechanics towards the everyday world: where do we stand, Phys. Scr. T102, 80 (2002)

    Article  Google Scholar 

  3. 3.

    E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Naturwissenchaften 23, 807 (1935); see also [4]

    ADS  MATH  Article  Google Scholar 

  4. 4.

    J.D. Trimmer, The present situation in quantum mechanics: a translation of Schrödinger’s cat paradox paper, Proc. Am. Phys. Soc. 124, 323 (1980)

    Google Scholar 

  5. 5.

    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)

  6. 6.

    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, 1955)

  7. 7.

    L. Diosi, A universal master equation for the gravitational violations of quantum mechanics, Phys. Lett. 120, 377 (1987)

    MathSciNet  Article  Google Scholar 

  8. 8.

    L. Diosi, Models for universal reduction of macroscopic quantum fluctuations, Phys. Rev. A 40, 1165 (1989)

    ADS  Article  Google Scholar 

  9. 9.

    G.C. Ghirardi, R. Grassi, A. Rimini, Continuous-spontaneous-reduction models involving gravity, Phys. Rev. A 42, 1057 (1990)

    ADS  Article  Google Scholar 

  10. 10.

    P. Pearle, E. Squires, Gravity, energy conservation, and parameter values in collapse models, Found. Phys. 26, 291 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    R. Penrose, On gravity’s role in quantum state reduction, Gen. Relativ. Gravitation 28, 581 (1996)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    L. Diosi, Gravity related spontaneous wave function collapse in bulk matter, New J. Phys. 16, 105006 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    A. Tilloy, L. Diosi, Sourcing semiclassical gravity from spontaneously localized quantum matter, Phys. Rev. D 93, 024026 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    S.L. Adler, Gravitation and the noise needed in objective reduction models, in Quantum nonlocality and reality: 50 years of Bell’s theorem, edited by M. Bell, S. Gao, (Cambridge University Press, 2016)

  15. 15.

    G. Gasbarri, M. Toros, S. Donadi, A. Bassi, Gravity induced wave function collapse, Phys. Rev. D 96, 104013 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    A. Bassi, K. Lochan, S. Satin, T. Singh, H. Ulbricht, Models of wave function collapse, underlying theories, and experimental tests, Rev. Mod. Phys. 85, 471 (2013)

    ADS  Article  Google Scholar 

  17. 17.

    T.P. Singh, Possible role of gravity in collapse of the wave-function: a brief survey of some ideas, J. Phys.: Conf. Ser. 626, 012009 (2015)

    Google Scholar 

  18. 18.

    L. de Broglie, La mécanique ondulatoire et la structure atomique de la matière et du rayonnement, J. Phys. Radium 8, 225 (1927)

    MATH  Article  Google Scholar 

  19. 19.

    D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, Phys. Rev. 85, 166 (1952)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    P. Holland, The Quantum Theory of Motion (Cambridge University Press, 1993)

  21. 21.

    G. Bacchiagaluppi, A. Valentini, Quantum theory at the crossroads: reconsidering the 1927 Solvay conference (Cambridge University Press, 2009)

  22. 22.

    D. Dürr, S. Goldstein, N. Zanghi, Quantum physics without quantum philosophy (Springer, 2013)

  23. 23.

    J. Bricmont, Making sense of quantum mechanics (Springer, 2016)

  24. 24.

    G. Ghirardi, A. Rimini, T. Weber, Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34, 470 (1986)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    P. Pearle, Combining stochastic dynamical state-vector reduction with spontaneous localization, Phys. Rev. A 39, 2277 (1989)

    ADS  Article  Google Scholar 

  26. 26.

    V. Allori, S. Goldstein, R. Tumulka, N. Zhanghi, On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory, Br. J. Philos. Sci. 59, 353 (2008) – see in particular Section 7.2

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    D. Bedingham, Hidden variable interpretation of spontaneous localization theory, J. Phys. A 44, 275303 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    R. Tumulka, Comment on Hidden variable interpretation of spontaneous localization theory, J. Phys. A 44, 478001 (2011)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    F. Laloë, Modified Schrödinger dynamics with attractive densities, Eur. Phys. J. D 69, 162 (2015)

    ADS  Article  Google Scholar 

  30. 30.

    F. Laloë, Quantum collapse dynamics with attractive densities, Phys. Rev. A 99, 052111 (2019)

    ADS  Article  Google Scholar 

  31. 31.

    M. Bahrami, A. Grossardt, S. Donadi, A. Bassi, The Schrödinger-Newton equation and its foundations, New J. Phys. 16, 115007 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    O.V. Prezdho, C. Brooksby, Quantum backreaction through the Bohmian particle, Phys. Rev. Lett. 86, 3215 (2001)

    ADS  Article  Google Scholar 

  33. 33.

    L. Diosi, T.B. Papp, Schrödinger-Newton equation with a complex Newton constant and induced gravity, Phys. Lett. A 373, 3244 (2009)

    ADS  MATH  Article  Google Scholar 

  34. 34.

    A. Valentini, H. Westman, Dynamical origin of quantum probabilities, Proc. Roy. Soc. A 461, 253 (2004)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    M.D. Towler, N.J. Russell, A. Valentini, Time scales for dynamical relaxation to the Born rule, Proc. R. Soc. A 468, 990 (2012)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, M. Arndt, Quantum interference of clusters and molecules, Rev. Mod. Phys. 84, 157 (2012)

    ADS  Article  Google Scholar 

  37. 37.

    P.C.E. Stamp, Rationale for a correlated worldline theory of quantum gravity, New. J. Phys. 17, 065017 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  38. 38.

    P.C.E. Stamp, in 4th lecture given at the College de France (Paris, 2016)

  39. 39.

    G. Tastevin, F. Laloë, Surrealistic Bohmian trajectories do not occur with macroscopic pointers, Eur. Phys. J. D 72, 183 (1981)

    ADS  Article  Google Scholar 

  40. 40.

    J.S. Bell, Bertlmann’s socks and the nature of reality, J. Phys. Colloques C2, 41 (1981). [Reprinted in pp. 139–158 of [41]]

    Google Scholar 

  41. 41.

    J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, (Cambridge University Press, 1987); second augmented edition (2004)

  42. 42.

    N. Gisin, Stochastic quantum dynamics and relativity, Helv. Phys. Acta 62, 363 (1989)

    MathSciNet  Google Scholar 

  43. 43.

    A. Bassi, K. Hejazi, No-faster-than-light-signaling implies linear evolutions. A rederivation, Eur. J. Phys. 36, 055027 (2015)

    MATH  Article  Google Scholar 

  44. 44.

    L. Diosi, Nonlinear Schrödinger equation in foundations: summary of 4 catches, J. Phys.: Conf. Ser. 701, 012019 (2016)

    Google Scholar 

  45. 45.

    S. Nimmrichter, K. Hornberger, Stochastic extensions of the regularized Schrödinger-Newton equation, Phys. Rev. D 91, 024016 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  46. 46.

    A. Shimony, Events and processes in the quantum world pp. 182–203 in: Quantum concepts in Space and Timeedited by R. Penrose, C. Isham, (Clarendon Press, Oxford, 1986)

  47. 47.

    P. Pearle, E. Squires, Bound state excitation, nucleon decay experiments, and models of wave function collapse, Phys. Rev. Lett. 73, 1 (1993)

    ADS  Article  Google Scholar 

  48. 48.

    Ph. Blanchard, A. Jadczyk, A. Ruschhaupt, How events come into being: EEQT, particle tracks, quantum chaos and tunneling time, in Mysteries, Puzzles and Paradoxes in Quantum Mechanics, edited by R. Bonifacio, American Institute of Physics, AIP Conference Proceedings, no. 461 (1999) [J. Mod. Opt. 47, 2247 (2000)]

  49. 49.

    D. Bohm, J. Bub, A proposed solution of the measurement problem in quantum mechanics by hidden variable theory, Rev. Mod. Phys. 38, 453 (1966)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    A. Tilloy, Ghirardi-Rimini-Weber model with massive flashes, Phys. Rev. D 97, 021502 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  51. 51.

    W. Struyve, Semi-classical approximations based on Bohmian mechanics (2015) https://arXiv:1507.04771

  52. 52.

    W. Struyve, Towards a novel approach to semi-classical gravity, in The philosophy of cosmology, edited by K. Chamcham, J. Silk, J.D. Barrow, S. Saunders, (Cambridge University Press, 2017); https://arXiv:1902.02188 (2019)

  53. 53.

    P. Peter, E. Pinho, N. Pinto-Neto, Tensor perturbations in quantum cosmological backgrounds, J. Cosmol. Astropart. Phys. 07, 014 (2005)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  54. 54.

    P. Peter, E. Pinho, N. Pinto-Neto, Gravitational wave background in perfect fluid quantum cosmologies, Phys. Rev. D 73, 104017 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  55. 55.

    E. Pinho, N. Pinto-Neto, Scalar and vector perturbations in quantum cosmological backgrounds, Phys. Rev. D 76, 023506 (2007)

    ADS  MATH  Article  Google Scholar 

  56. 56.

    C. Møller, Les théories relativistes de la gravitation (Colloques internationaux du CNRS, Paris, 1959)

  57. 57.

    L. Rosenfeld, On the quantization of fields, Nucl. Phys. 40, 353 (1963)

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    L. Rosenfeld, in Quantentheorie und Gravitation in Einstein symposium 1965 (Akademie, Berlin 1966) [English translation in page 599 of selected papers of L. Rosenfeld, Boston studies in the philosophy of science, edited by R.S. Cohen, J.J. Stachelin (Reidel, 1979)]

  59. 59.

    K. Eppley, E. Hahhah, The necessity of quantizing the gravitational field, Found. Phys. 7, 51 (1977)

    ADS  Article  Google Scholar 

  60. 60.

    G. Baym, T. Ozawa, Two-slit diffraction with highly charged particles: Niels Bohr’s consistency argument that the electromagnetic field must be quantized, Proc. Nat. Acad. Sci. USA 106, 3035 (2009)

    ADS  Article  Google Scholar 

  61. 61.

    S. Bose, A. Mazumdar, G.W. Morley, H. Ulbricht, M. Toros, M. Paternostro, A.A. Geraci, P.F. Barker, M.S. Kim, G. Milnurn, Spin entanglement witness for quantum gravity, Phys. Rev. Lett. 119, 240401 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  62. 62.

    C. Marletto, V. Vedral, Gravitationnally induced entanglement between two massive particles is sufficient evidence of quantum effects of gravity, Phys. Rev. Lett. 119, 240402 (2017)

    ADS  Article  Google Scholar 

  63. 63.

    A. Belenchia, R.M. Wald, F. Giacomini, E. Castro-Ruiz, C. Brukner, M. Aspelmeyer, Quantum superposition of massive objects and the quantization of gravity, Phys. Rev. D 98, 126009 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  64. 64.

    A. Tilloy, Does gravity have to be quantized? Lessons from non-relativistic toy models, https://arXiv:1903.01823 (2019)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Franck Laloë.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laloë, F. A model of quantum collapse induced by gravity. Eur. Phys. J. D 74, 25 (2020). https://doi.org/10.1140/epjd/e2019-100434-1

Download citation

Keywords

  • Quantum Optics