Skip to main content
Log in

Study of electron collision from bioalcohols from 10 to 5000 eV

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The electron-impact cross sections are obtained for alkyl bioalcohols in the energy range from ionization threshold to 5000 eV. The molecular wavefunction of targets are obtained from the multi-centre expansion of the Gaussian-type orbitals within a single determinant Hartree–Fock self consistent field scheme. The three dimensional molecular quantities like wavefunction, density and potentials are expanded at the centre of mass of molecule using the Single Centre Expansion formalism. The interaction potential is assumed to be local in nature and is approximated by static, correlation-polarization and exchange effects. The elastic cross sections are obtained after solving the coupled integro-radial differential equations using Volterra integral form. The inelastic ionization cross sections are computed by Binary-Encounter-Bethe method. The total cross sections are obtained after summing the elastic and inelastic cross sections incoherently. The scattering calculations were also performed for glycerol and phenol. The cross sections obtained from present methodology are in good agreement with available results. The study of e scattering from different targets has helped in expressing a relationship between the total cross section of two different targets in a most simple but effective way.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Goldenberg, Biotechnol. Biofuels 1, 4096 (2008) .

    Google Scholar 

  2. A.K. Chandel, R.K. Sukumaran (eds.), Sustainable Biofuels Development in India (Springer International, 2017).

  3. C.R. Soccol, S.K. Brar, C. Faulds, L.P. Ramos (eds.), Green Fuels Technology: Biofuels (Springer International, 2016).

  4. M.J. Brunger, Int. Rev. Phys. Chem. 36, 333 (2017).

    Google Scholar 

  5. W. Higashide, Y. Li, T. Yang, Appl. Environ. Microbiol. 77, 2723 (2011).

    Google Scholar 

  6. D. Antoni, V.V. Zverlov, W.H. Schwarz, Appl. Microbiol. Biotechnol. 77, 23 (2007).

    Google Scholar 

  7. K. Bulkowska, Z.M. Gusiatin, E. Klimiuk, A. Pawlowski, T. Pokoj (eds.), Biomass for Biofuels (CRC Press, 2016).

  8. Y.J. Choi, J. Lee, Y.-S. Jang, S.Y. Lee, MBio 5, e01524-14 (2014).

    Google Scholar 

  9. S.H. Desai, C.A. Rabinovitch-Deere, Z. Fan, S. Atsumi, Microb. Cell Fact. 14, 52 (2015).

    Google Scholar 

  10. J. Amorim, C. Oliveira, J.A. Souza-Correa, M.A. Ridenti, Plasma Processes Polym. 10, 670 (2013).

    Google Scholar 

  11. N. Schultz-Jensen, F. Leipold, H. Bindslev, A. Thomsen, Appl. Biochem. Biotechnol. 163, 558 (2011).

    Google Scholar 

  12. R. Marzio, S. Dimitris, B. Nadia, N. Caterina, F.L. Noelia, P. Leonardo, F. Stefano, S. Domenico, Front. Chem. 7, 326 (2019).

    Google Scholar 

  13. E. Koivisto, N. Ladommatos, M. Gold, Fuel 153, 650 (2015).

    Google Scholar 

  14. B. Rajesh Kumar, S. Saravanan, Renewable Sustainable Energy Rev. 60, 84 (2016).

    Google Scholar 

  15. L.G. Christophorou (ed.), in Electron Molecule Interactions and Their Applications (Academic, New York, 1984), Vols. 1 and 2.

  16. T. Watanabe, I. Shimamura, M. Shimizu, Y. Itikawa (eds.), Molecular Processes in Space (Plenum, New York, 1990).

    Google Scholar 

  17. D.V. Fursa, M.C. Zammit, R.L. Threlfall, J.S. Savage, I. Bray, Phys. Rev. A 96, 022709 (2017).

    ADS  Google Scholar 

  18. W.J. Maciel, Astrophysics of the Interstellar Medium (Springer, New York, 2013).

  19. B. Boudaïffa, P. Cloutier, D. Hunting, D.A. Huels, L. Sanche, Science 287, 1658 (2000).

    ADS  Google Scholar 

  20. B. Block, P. Möser, W. Hentschel, Opt. Eng. 36, 1183 (1997).

    ADS  Google Scholar 

  21. S.Y. Liao, D.M. Jiang, Q.M. Cheng, Z.H. Huang, K. Zeng, Energy Fuels 20, 84 (2006).

    Google Scholar 

  22. F.A. Gianturco, R.R. Lucchese, N. Sanna, A. Talamo, A generalized single center approach for treating electron scattering from polyatomic molecules, in Electron Collisions with Molecules, Clusters, and Surfaces, edited by H. Ehrhardt, L.A. Morgan (Plenum, New York, 1994).

    Google Scholar 

  23. M. Vinodkumar, C. Limbachiya, A. Barot, N. Mason, Phys. Rev. A 87, 012702 (2013).

    ADS  Google Scholar 

  24. S. Singh, R. Naghma, J. Kaur, B. Antony, J. Chem. Phys. 145, 034309 (2016).

    ADS  Google Scholar 

  25. X.M. Tan, D.H. Wang, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 1094 (2011).

    ADS  Google Scholar 

  26. D.G.M. da Silva, M. Gomes, S. Ghosh, I.F.L. Silva, W.A.D. Pires, D.B. Jones, F. Blanco, G. García, S.J. Buckman, M.J. Brunger, M.C.A. Lopes, J. Chem. Phys. 147, 194307 (2017).

    ADS  Google Scholar 

  27. A.P.P. Natalense, R.R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

    ADS  Google Scholar 

  28. F.A. Gianturco, R.R. Lucchese, N. Sanna, J. Chem. Phys. 100, 6464 (1994).

    ADS  Google Scholar 

  29. N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 128, 139 (2000).

    ADS  Google Scholar 

  30. F.A. Gianturco, A. Jain, Phys. Rep. 143, 347 (1986).

    ADS  Google Scholar 

  31. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981).

    ADS  Google Scholar 

  32. S. Hara, J. Phys. Soc. Jpn. 22, 710 (1967).

    ADS  Google Scholar 

  33. R. Currik, F.A. Gianturco, N. Sanna, J. Phys. B. 33, 615 (2000).

    ADS  Google Scholar 

  34. Y.K. Kim, W. Hwang, N.M. Weinberger, M.A. Ali, M.E. Rudd, J. Chem. Phys. 106, 1026 (1997).

    ADS  Google Scholar 

  35. R.D. Johnson III, NIST Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database Number 101 (NIST, US Secretary of Commerce, Gaithersburg, MD, 2019), http://cccbdb.nist.gov/.

  36. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Rob, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03 (Gaussian Inc, Wallingford, CT, 2003).

  37. F.A. Gianturco, V. Di, A.K.Jain Martino, Il Nuovo Cimento 14, 411 (1992).

    Google Scholar 

  38. N. Sanna, I. Baccarelli, G. Morelli, Comput. Phys. Commun. 180, 2544 (2009).

    ADS  Google Scholar 

  39. N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 114, 142 (1998).

    ADS  Google Scholar 

  40. C. Szmytkowski, A.M. Krzysztofowicz, J. Phys. B: At. Mol. Opt. Phys. 28, 4291 (1995).

    ADS  Google Scholar 

  41. D.G.M. Silva, T. Tejo, J. Muse, D. Romero, M.A. Khakoo, M.C.A. Lopes, J. Phys. B: At. Mol. Opt. Phys. 43, 015201 (2010).

    ADS  Google Scholar 

  42. M.A. Khakoo, J. Blumer, K. Keane, C. Campbell, H. Silva, M.C.A. Lopes, C. Winstead, V. McKoy, R.F. da Costa, L.G. Ferreira, M.A.P. Lima, M.H.F. Bettega, Phys. Rev. A 77, 042705 (2008).

    ADS  Google Scholar 

  43. R.T. Sugohara, M.G.P. Homem, I.P. Sanches, A.F. de Moura, M.T. Lee, I. Iga, Phys. Rev. A 83, 032708 (2011).

    ADS  Google Scholar 

  44. N. Duric, I. Cadez, M. Kurepa, Fizika Zagreb 21, 339 (1989).

    Google Scholar 

  45. R. Rejoub, C.D. Morton, B.G. Lindsay, R.F. Stebbings, J. Chem. Phys. 118, 1756 (2003).

    ADS  Google Scholar 

  46. J.E. Hudson, M.L. Hamilton, C. Vallance, P.W. Harland, Phys. Chem. Chem. Phys. 5, 3162 (2003).

    Google Scholar 

  47. M. Vinodkumar, K. Korot, P.C. Vinodkumar, Int. J. Mass Spectrom. 305, 26 (2011).

    Google Scholar 

  48. P.S. Pal, Chem. Phys. 302, 119 (2004).

    Google Scholar 

  49. H. Deutsch, K. Becker, R. Basner, M. Schmid, T.D. Märk, J. Phys. Chem. A 102, 8819 (1998).

    Google Scholar 

  50. K.L. Nixon, W.A.D. Pires, R.F.C. Neves, H.V. Duque, D.B. Jones, M.J. Brunger, M.C.A. Lopes, Int. J. Mass Spectrom. 404, 48 (2016).

    Google Scholar 

  51. D. Bouchiha, J.D. Gorfinkiel, L.G. Caron, L. Sanche, J. Phys. B 40, 1259 (2007).

    ADS  Google Scholar 

  52. M.-T. Lee, G.L.C. de Souza, L.E. Machado, L.M. Brescansin, A.S. dos Santos, R.R. Lucchese, R.T. Sugohara, M.G.P. Homem, I.P. Sanches, I. Iga, J. Chem. Phys. 136, 114311 (2012).

    ADS  Google Scholar 

  53. L.R. Hargreaves, M.A. Khakoo, C. Winstead, V. McKoy, J. Phys. B. 49, 185201 (2016).

    ADS  Google Scholar 

  54. F. Blanco, J. Rosada, A. Illana, G. García, Phys. Lett. A 374, 4420 (2010).

    ADS  Google Scholar 

  55. F. Blanco, L. Ellis-Gibbings, G. García, Chem. Phys. Lett. 645, 71 (2016).

    ADS  Google Scholar 

  56. M.A. Khakoo, J. Muse, H. Silva, M.C.A. Lopes, C. Winstead, V. McKoy, E.M. de Oliveira, R.F. da Costa, M.T. do N. Varella, M.H.F. Bettega, M.A.P. Lima, Phys. Rev. A 78, 062714 (2008).

    ADS  Google Scholar 

  57. W.A.D. Pires, K.L. Nixon, S. Ghosh, R.F.C. Neves, H.V. Duque, R.A.A. Amorim, D.B. Jones, F. Blanco, G. García, M.J. Brunger, M.C.A. Lopes, Int. J. Mass Spectrom. 422, 32 (2017).

    Google Scholar 

  58. T. Takeuchi, S. Ueno, M. Yamamoto, Int. J. Mass Spectrom. 64, 33 (1985).

    ADS  Google Scholar 

  59. J.N. Bull, P.W. Harland, C. Vallance, J. Phys. Chem. A 116, 767 (2012).

    Google Scholar 

  60. M.H.F. Bettega, C. Winstead, V. McKoy, A. Jo, A. Gauf, J. Tanner, L.R. Hargreaves, M.A. Khakoo, Phys. Rev. A 84, 042702 (2011).

    ADS  Google Scholar 

  61. A. Bharadvaja, S. Kaur, K.L. Baluja, Phys. Plasmas 26, 063506 (2019).

    ADS  Google Scholar 

  62. M.H.F. Bettega, C. Winstead, V. McKoy, Phy. Rev. A 82, 062709 (2010).

    ADS  Google Scholar 

  63. E.M. de Oliveira, M.T. do N. Varella, M.H.F. Bettega, M.A.P. Lima, Eur. Phys. J. D 68, 65 (2014).

    ADS  Google Scholar 

  64. R.F. da Costa, E.M. de Oliveira, M.H.F. Bettega, M.T. do N. Varella, D.B. Jones, M.J. Brunger, F. Blanco, R. Colmenares, P. Limao-Vieira, G. García, M.A.P. Lima, J. Chem. Phys. 142, 104304 (2015).

    ADS  Google Scholar 

  65. R.F.C. Neves, D.B. Jones, M.C.A. Lopes, F. Blanco, G. García, K. Ratnavelu, M.J. Brunger, J. Chem. Phys. 142, 194305 (2015).

    ADS  Google Scholar 

  66. D. Gupta, H. Choi, S. Singh, P. Modak, B. Antony, D.-C. Kwon, Mi-Y. Song, J.-S. Yoon, J. Chem. Phys. 150, 064313 (2019).

    ADS  Google Scholar 

  67. H.Q. Tan, Z. Mi, A.A. Bettiol, Phys. Rev. E 97, 032403 (2018).

    ADS  Google Scholar 

  68. Y. Zheng, L. Sanche, Appl. Phys. Rev. 5, 021302 (2018).

    ADS  Google Scholar 

  69. E. Alizadeh, S. Ptasinska, L. Sanche, Transient anions in radiobiology and radiotherapy: from gaseous biomolecules to condensed organic and biomolecular solids, in: Radiation Effects in Materials, edited by W.A. Monteiro (ExLi4EvA, 2016) p. 179.

  70. C. Champion, Phys. Med. Biol. 55, 11 (2009).

    Google Scholar 

  71. M. Michaud, A. Wen, L. Sanche, Radiat. Res. 159, 3 (2003).

    ADS  Google Scholar 

  72. G. Cooper, N. Kimmich, W. Belisle, J. Sarinana, K. Brabham, L. Garrel, Nature 414, 879 (2001).

    ADS  Google Scholar 

  73. F.W. Lampe, J.L. Franklin, F.H. Field, J. Am. Chem. Soc. 79, 6129 (1957).

    Google Scholar 

  74. P.W. Harland, C. Vallance, Int. J. Mass Spectrom. Ion Processes 171, 173 (1997).

    ADS  Google Scholar 

  75. A. Jain, K.L. Baluja, Phys. Rev. A 45, 202 (1992).

    ADS  Google Scholar 

  76. M. Kaur, G. Kaur, A.K. Jain, H. Mohan, P.S. Singh, S. Sharma, K.L. Baluja, Phys. Rev. A 97, 052711 (2018).

    ADS  Google Scholar 

  77. W.Y. Baek, A. Arndt, M.U. Bug, H. Rabus, M. Wang, Phys. Rev. A 88, 032702 (2013) and references therein.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript and have read the final manuscript.

Corresponding author

Correspondence to Anand Bharadvaja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharadvaja, A., Kaur, S. & Baluja, K.L. Study of electron collision from bioalcohols from 10 to 5000 eV. Eur. Phys. J. D 73, 251 (2019). https://doi.org/10.1140/epjd/e2019-100424-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100424-9

Keywords

Navigation