Skip to main content
Log in

Enhanced tripartite entanglement via atomic coherence in atom-optomechanical system

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We present a scheme to greatly enhance tripartite entanglement in an atom-optomechanical hybrid system driven by a single input laser field. The enhancement of the tripartite entanglement among two longitudinal cavity modes and a mirror oscillation mode is realized via atomic coherence when the cavity free spectral range is about equal to twice the frequency of mechanical oscillation and both cavity modes are blue-detuned by the mechanical frequency to the respective atomic resonant transitions while keeping the two-photon resonance satisfied. Moreover, the entanglement between the two cavity modes exhibits robustness to the variation of the environment temperature. The present atom-assisted optomechanical system provides an alternative platform for the quantum state exchange between light and light, as well as light and matter.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bouweester, A. Ekert, A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2000)

  2. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  3. H.J. Kimble, Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  4. J.T. Jing, J. Zhang, Y. Yan, F.G. Zhao, C.D. Xie, K. Peng, Phys. Rev. Lett. 90, 167903 (2003)

    Article  ADS  Google Scholar 

  5. P. Van Loock, S.L. Braunstein, Phys. Rev. Lett. 84, 3482 (2000)

    Article  ADS  Google Scholar 

  6. P. Van Loock, A. Furusawa, Phys. Rev. A 67, 052315 (2003)

    Article  ADS  Google Scholar 

  7. V. Boyer, A.M. Marino, R.C. Pooser, P.D. Lett, Science 321, 544 (2008)

    Article  ADS  Google Scholar 

  8. X.H. Yang, M. Xiao, Sci. Rep. 5, 13609 (2015)

    Article  ADS  Google Scholar 

  9. X.H. Yang, B.L. Xue, J.X. Zhang, S.Y. Zhu, Sci. Rep. 4, 6629 (2014)

    Article  Google Scholar 

  10. X.H. Yang, Y.Y. Zhou, M. Xiao, Phys. Rev. A 85, 052307 (2012)

    Article  ADS  Google Scholar 

  11. L.M. Cao, J. Qi, J.J. Du, J.T. Jing, Phys. Rev. A 95, 023803 (2017)

    Article  ADS  Google Scholar 

  12. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  13. X.H. Yang, Y. Ling, X.P. Shao, M. Xiao, Phys. Rev. A 95, 052303 (2017)

    Article  ADS  Google Scholar 

  14. D. Vitali, S. Gigan, A. Ferreira, H.R. Bohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  15. L. Tian, Phys. Rev. Lett. 110, 233602 (2013)

    Article  ADS  Google Scholar 

  16. S. Mancini, V. Giovannetti, D. Vitali, P. Tombesi, Phys. Rev. Lett. 88, 120401 (2002)

    Article  ADS  Google Scholar 

  17. C. Genes, D. Vitali, P. Tombesi, Phys. Rev. A 77, 050307 (2008)

    Article  ADS  Google Scholar 

  18. K. Hammerer, M. Aspelmeyer, E.S. Polzik, P. Zoller, Phys. Rev. Lett. 102, 020501 (2009)

    Article  ADS  Google Scholar 

  19. H. Ian, Z.R. Gong, Y.-X. Liu, C.P. Sun, F. Nori, Phys. Rev. A 78, 013824 (2008)

    Article  ADS  Google Scholar 

  20. X.H. Yang, J.Q. Liu, X.N. Yan, M. Xiao, J. Phys. B 51, 205501 (2018)

    Article  ADS  Google Scholar 

  21. L. Zhou, Y. Han, J.T. Jing, W.P. Zhang, Phys. Rev. A 83, 052117 (2011)

    Article  ADS  Google Scholar 

  22. K. Hammerer, M. Aspelmeyer, E.S. Polzik, P. Zoller, Phys. Rev. Lett. 102, 020501 (2009)

    Article  ADS  Google Scholar 

  23. R. Benguria, M. Kac, Phys. Rev. Lett. 46, 1 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.J. Merriam, S.J. Sharpe, M. Shverdin, D. Manuszak, G.Y. Yin, G.I. Harris, Phys. Rev. Lett. 84, 5308 (2000)

    Article  ADS  Google Scholar 

  25. L.M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 84, 2722 (2000)

    Article  ADS  Google Scholar 

  26. J.T. Hill, A.H. Safavi-Naeini, J. Chan, O. Painter, Nat. Commun. 3, 1196 (2012)

    Article  ADS  Google Scholar 

  27. K.Y. Zhang, F. Bariani, Y. Dong, W.P. Zhang, P. Meystre, Phys. Rev. Lett. 114, 113601 (2015)

    Article  ADS  Google Scholar 

  28. X.H. Yang, M. Xiao, Sci. Rep. 5, 13609 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihua Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, X., Yin, Z., Li, Z. et al. Enhanced tripartite entanglement via atomic coherence in atom-optomechanical system. Eur. Phys. J. D 73, 247 (2019). https://doi.org/10.1140/epjd/e2019-100390-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100390-2

Keywords

Navigation