Skip to main content

Advertisement

Log in

New 3D potential energy surface and infrared spectrum of Ar—N2O complex in the N2O v3 fundamental vibration region

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The goal of this paper was to re-evaluate 3D potential energy surface of the Ar–N2O complex containing N2O monomer v3 stretching vibrations. Two vibrational potentials for v3 = 0, 1 were obtained and then used to predict infrared spectra and spectroscopic constants of the Ar–N2O complex, which showed excellent agreement with the experimentally obtained infrared spectra.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Ngari, W. Jager, J. Mol. Spectrosc. 192, 320 (1998)

    Article  ADS  Google Scholar 

  2. P.J. Crutzen, Angew. Chem. Int. Ed. Engl. 35, 1758 (1996)

    Article  Google Scholar 

  3. C.H. Joyner, T.A. Dixon, F.A. Baiocchi, W. Klemperer, J. Chem. Phys. 75, 5285 (1981)

    Article  ADS  Google Scholar 

  4. H.O. Leung, Chem. Commun. 108, 3955 (1996)

    Google Scholar 

  5. H.O. Leung, D. Gangwani, J.U. Grabow, J. Mol. Spectrosc. 184, 106 (1997)

    Article  ADS  Google Scholar 

  6. M.S. Ngari, W. Jäger, J. Mol. Spectrosc. 192, 452 (1998)

    Article  ADS  Google Scholar 

  7. H. Hodge, G.D. Hayman, T.R. Dyke, B.J. Howard, J. Chem. Soc. Faraday Trans. 82, 1137 (1986)

    Article  Google Scholar 

  8. T.A. Hu, E.L. Chappell, S.W. Sharpe, J. Chem. Phys. 98, 6162 (1993)

    Article  ADS  Google Scholar 

  9. G. Gimmler, M. Havenith, J. Mol. Struct. 599, 117 (2001)

    Article  ADS  Google Scholar 

  10. W.A. Herrebout, H.B. Qian, H. Yamaguchi, B.J. Howard, J. Mol. Spectrosc. 189, 235 (1998)

    Article  ADS  Google Scholar 

  11. J. Tang, A.R.W. McKellar, J. Chem. Phys. 117, 2586 (2002)

    Article  ADS  Google Scholar 

  12. H. Zhu, D.Q. Xie, G.S. Yan, Chem. Phys. Lett. 351, 149 (2002)

    Article  ADS  Google Scholar 

  13. X.G. Song, Y.J. Xu, P.N. Roy, W. Jäger, J. Chem. Phys. 121, 12308 (2004)

    Article  ADS  Google Scholar 

  14. B.T. Chang, O. Akin-Ojo, R. Bukowski, K. Szalewicz, J. Chem. Phys. 119, 11654 (2003)

    Article  ADS  Google Scholar 

  15. Y.Z. Zhou, D.Q. Xie, J. Chem. Phys. 120, 8575 (2004)

    Article  ADS  Google Scholar 

  16. Y.Z. Zhou, D.Q. Xie, D.H. Zhang, J. Chem. Phys. 124, 144317 (2006)

    Article  ADS  Google Scholar 

  17. H. Zhu, D.Q. Xie, G.S. Yan, J. Comput. Chem. 24, 1839 (2003)

    Article  Google Scholar 

  18. R. Chen, H. Zhu, J. Theo. Comput. Chem. 7, 1093 (2008)

    Article  Google Scholar 

  19. J.X. Chen, H. Zhu, D.Q. Xie, G.S. Yan, Acta Chimica Sinica. 62, 5 (2004)

    Google Scholar 

  20. J.H. Wang, Y.L. Han, Z. Li, E.Y. Feng, W.Y. Huang, Mol. Phys. 111, 771 (2013)

    Article  ADS  Google Scholar 

  21. Z.Q. Wang, E.Y. Feng, C.Z. Zhang, C.Y. Sun, Chem. Phys. Lett. 626, 43 (2015)

    Article  ADS  Google Scholar 

  22. Z.Q. Wang, E.Y. Feng, C.Z. Zhang, C.Y. Sun, Chem. Phys. Lett. 638, 66 (2015)

    Article  ADS  Google Scholar 

  23. K. Raghavachari, G.W. Trucks, J.A. Pople, M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989)

    Article  ADS  Google Scholar 

  24. L. Zang, W. Dai, L. Zheng, J. Chem. Phys. 140, 114310 (2014)

    Article  ADS  Google Scholar 

  25. L. Zheng, S.Y. Lee, Y. Lu, J. Chem. Phys. 138, 044302 (2013)

    Article  ADS  Google Scholar 

  26. D.E. Woon, T.H. Dunning, J. Chem. Phys. 98, 1358 (1993)

    Article  ADS  Google Scholar 

  27. T.B. Pedersen, B. Fernandez, H. Koch, J. Makarewicz J. Chem. Phys. 115, 8431 (2001)

    Article  ADS  Google Scholar 

  28. S.F. Boys, F. Bernardi, Mol Phys. 19, 553 (1970)

    Article  ADS  Google Scholar 

  29. C.C. Costain, J. Chem. Phys. 29, 869 (1958)

    Article  ADS  Google Scholar 

  30. Z.Q. Wang, E.Y. Feng, C.Z. Zhang, C.Y. Sun, Comput. Theor. Chem. 1112, 82 (2017)

    Article  Google Scholar 

  31. C.Y. Sun, Z.Q. Wang, E.Y. Feng, C.Z. Zhang, Chem. Phys. Lett. 592, 182 (2014)

    Article  ADS  Google Scholar 

  32. C.Y. Sun, X. Shao, C.H. Yu, E.Y. Feng, W.Y. Huang, Chem. Phys. Lett. 549, 12 (2012)

    Article  ADS  Google Scholar 

  33. K.T. Tang, J.P. Toennies, J. Chem. Phys. 80, 3726 (1984)

    Article  ADS  Google Scholar 

  34. D.S. Zhu, R.B. Wang, R. Zheng, G.M. Huang, C.X. Duan, J. Mol. Spectrosc. 253, 88 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Han, Y. New 3D potential energy surface and infrared spectrum of Ar—N2O complex in the N2O v3 fundamental vibration region. Eur. Phys. J. D 73, 261 (2019). https://doi.org/10.1140/epjd/e2019-100372-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100372-4

Keywords

Navigation