Skip to main content
Log in

Optically induced transparency in coupled micro-cavities: tunable Fano resonance

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We theoretically investigate the phenomena of optically induced transparency for a weak probe field and tunable asymmetric Fano line shape in coupled micro-cavities. One of the cavities is passive, consists of optical Kerr medium and coupled via photon tunnelling to an active cavity. The forward transmission and backward reflection profile of the output fields are analyzed for both passive-passive and passive-active cavity system by varying different system parameters. The transmission spectra show tunable transparency window and sharp asymmetric Fano line shape structure. The sharpness of line shape profile is controlled via the gain-to-loss ratio, photon tunnelling strength, Kerr nonlinear strength and input power. The findings in this study have the potential to be used as a highly sensitive sensor and also useful for telecom system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.E. Harris, et al., Phys. Rev. Lett. 64, 1107 (1990)

    ADS  Google Scholar 

  2. K.J. Boller, et al., Phys. Rev. Lett. 66, 2593 (1991)

    ADS  Google Scholar 

  3. A.V. Turukhin, et al., Phys. Rev. Lett. 88, 023602 (2001)

    ADS  Google Scholar 

  4. D. Brunner, et al., Science 325, 70 (2009)

    ADS  Google Scholar 

  5. Y. Wu, X. Yang, Phys. Rev. B 76, 054425 (2007)

    ADS  Google Scholar 

  6. S. Zhang, et al., Phys. Rev. Lett. 101, 047401 (2008)

    ADS  Google Scholar 

  7. P. Tassin, et al., Phys. Rev. Lett. 102, 053901 (2009)

    ADS  Google Scholar 

  8. G.S. Agarwal, S. Huang, Phys. Rev. A 81, 041803(R) (2010)

    ADS  Google Scholar 

  9. K.A. Yasir, W.M. Liu, Sci. Rep. 6, 22651 (2016)

    ADS  Google Scholar 

  10. Y.C. Liu, B.B. Li, Y.F. Xiao, Nanophotonics 6, 789 (2017)

    Google Scholar 

  11. L.V. Hau, et al., Nature 397, 594 (1999)

    ADS  Google Scholar 

  12. R.G. Beausoleil, et al., J. Mod. Opt. 51, 16 (2004)

    MathSciNet  Google Scholar 

  13. A. André, et al., J. Phys. B: At. Mol. Opt. Phys. 38, 9 (2005)

    Google Scholar 

  14. C.S. Hofmann, et al., Phys. Rev. Lett. 110, 203601 (2013)

    ADS  Google Scholar 

  15. C. Liu, et al., Nature (London) 409, 490 (2001)

    ADS  Google Scholar 

  16. M.D. Lukin, A. Imamoglu, Nature 413, 273 (2001)

    ADS  Google Scholar 

  17. H.J. Kimble, Nature 453, 1023 (2008)

    ADS  Google Scholar 

  18. R.W. Boyd, D.J. Gauthier, Science 326, 1074 (2009)

    ADS  Google Scholar 

  19. S. Weis, et al., Science 330, 1520 (2010)

    ADS  Google Scholar 

  20. J.D. Teufel, et al., Nature 471, 204 (2011)

    ADS  Google Scholar 

  21. A.H. Safavi-Naeini, et al., Nature (London) 472, 69 (2011)

    ADS  Google Scholar 

  22. H. Xiong, et al., Phys. Rev. A 86, 013815 (2012)

    ADS  Google Scholar 

  23. C. Dong, et al., Phys. Rev. B 87, 055802 (2013)

    Google Scholar 

  24. A. Sohail, et al., Sci. Rep. 6, 28830 (2016)

    ADS  Google Scholar 

  25. Q. Wu, P.C. Ma, J. Mod. Opt. 64, 685 (2016)

    ADS  Google Scholar 

  26. Q. Wang, et al., Int. J. Theor. Phys. 55, 1324 (2016)

    Google Scholar 

  27. G.S. Agarwal, S. Huang, Phys. Rev. A 85, 021801 (2012)

    ADS  Google Scholar 

  28. J.Q. Zhang, et al., Phys. Rev. A 86, 053806 (2012)

    ADS  Google Scholar 

  29. J.T. Hill, et al., Nat. Commun. 3, 1196 (2012)

    ADS  Google Scholar 

  30. K. Qu, G.S. Agarwal, Phys. Rev. A 87, 031802 (2013)

    ADS  Google Scholar 

  31. Y. Zheng, et al., Light: Sci. Appl. 5, e16072 (2016)

    Google Scholar 

  32. T.C.H. Liew, A.V. Kavokin, Opt. Lett. 43, 259 (2018)

    ADS  Google Scholar 

  33. U. Fano, Phys. Rev. 124, 1866 (1961)

    ADS  Google Scholar 

  34. C.L.G. Alzar, et al., Am. J. Phys. 70, 37 (2002)

    ADS  Google Scholar 

  35. J. Faist, et al., Nature 390, 589591 (1997)

    Google Scholar 

  36. M. Kroner, et al., Nature 451, 311 (2008)

    ADS  Google Scholar 

  37. A.E. Miroshnichenko, et al., Rev. Mod. Phys. 82, 2257 (2010)

    ADS  Google Scholar 

  38. B. Luk’yanchuk, et al., Nat. Mater. 9, 707 (2010)

    ADS  Google Scholar 

  39. M.V. Rybin, et al., Phys. Rev. Lett. 103, 023901 (2009)

    ADS  Google Scholar 

  40. N. Liu, et al., Nat. Mater. 8, 758 (2009)

    ADS  Google Scholar 

  41. G.L. Shang, et al., Sci. Rep. 4, 3601 (2014)

    Google Scholar 

  42. T. Ramos, et al., Phys. Rev. Lett. 110, 193602 (2013)

    ADS  Google Scholar 

  43. H. Wang, et al., Phys. Rev. A 90, 023817 (2014)

    ADS  Google Scholar 

  44. S. Zhang, et al., Sci. Rep. 7, 39781 (2016)

    ADS  Google Scholar 

  45. F. Nazari, et al., Opt. Exp. 22, 9574 (2014)

    ADS  Google Scholar 

  46. H. Jing, et al., Sci. Rep. 5, 9693 (2015)

    Google Scholar 

  47. S. Hayashi, et al., Appl. Phys. Lett. 108, 051101 (2016)

    ADS  Google Scholar 

  48. G. Arkhipkin, Y.I. Heller, Phys. Lett. A 98, 12 (1983)

    ADS  Google Scholar 

  49. M.O. Scully, et al., Phys. Rev. Lett. 62, 2813 (1989)

    ADS  Google Scholar 

  50. K.L. Lee, et al., Opt. Exp. 19, 24530 (2011)

    ADS  Google Scholar 

  51. G.S. Agarwal, S.L. Hann, J. Copper, Phys. Rev. A 29, 2552 (1984)

    ADS  Google Scholar 

  52. A. Barnthaler, et al., Phys. Rev. Lett. 105, 056801 (2010)

    ADS  Google Scholar 

  53. A. Chiba, et al., Appl. Phys. Lett. 86, 261106 (2005)

    ADS  Google Scholar 

  54. B.B. Li, et al., Appl. Phys. Lett. 98, 021116 (2011)

    ADS  Google Scholar 

  55. B. Peng, et al., Opt. Lett. 37, 3435 (2012)

    ADS  Google Scholar 

  56. J. Li, R. Yu, Y. Wu, Phys. Rev. A 92, 053837 (2015)

    ADS  Google Scholar 

  57. A.B. Matsko, et al., IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006)

    ADS  Google Scholar 

  58. V.S. Ilchenko, et al., IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006)

    ADS  Google Scholar 

  59. Y. Tanaka, et al., Nat. Mater. 6, 862 (2007)

    ADS  Google Scholar 

  60. S. Huang, G.S. Agarwal, Phys. Rev. A 81, 033830 (2010)

    ADS  Google Scholar 

  61. K.J. Vahala, Nature (London) 424, 839 (2003)

    ADS  Google Scholar 

  62. K.J. Vahala, Optical Microcavities, in Advanced Series in Applied Physics (World Scientific, 2004) Vol. 5

  63. L. Chang, et al., Nat. Photonics 8, 524 (2014)

    ADS  Google Scholar 

  64. B. Peng, et al., Nat. Phys. 10, 394 (2014)

    Google Scholar 

  65. B. Peng, et al., Science 346, 328 (2014)

    ADS  Google Scholar 

  66. L. Feng, et al., Science 346, 972 (2014)

    ADS  Google Scholar 

  67. H. Hodaei, et al., Science 346, 975 (2014)

    ADS  Google Scholar 

  68. S. Li, et al., Sci. Rep. 7, 8992 (2017)

    ADS  Google Scholar 

  69. G.T. Reed, et al., Nat. Photon. 4, 518 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousik Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K., Jana, P.C. Optically induced transparency in coupled micro-cavities: tunable Fano resonance. Eur. Phys. J. D 73, 264 (2019). https://doi.org/10.1140/epjd/e2019-100356-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100356-4

Keywords

Navigation