Skip to main content
Log in

A phosphorene-based metasurface absorber operating in ultra-wideband terahertz regime

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Metasurface, with the ultrathin thickness, has been extensively investigated in the past few years. A specific branch, the metasurface-based absorber, has generated considerable interest as a result of its high absorptivity of electromagnetic waves. In this paper, an ultra-wideband absorber based on patterned phosphorene metasurface is proposed in terahertz range and can overstep the bandwidth limitation of the conventional metasurface-based absorber. This absorber comprises 4-group phosphorene/dielectric pairs with various widths and regular spaces, which forms frustum pyramid stack on a gold ground. In this design, the surface plasmonic waves are excited on phosphorene and the wide bandwidth from 3.4 to 9.6 THz with the absorptivity ≥90% is obtained. Attributing to the electric dipolar resonance, the incident plane waves with various frequencies are absorbed at phosphorene with corresponding widths, which results in the ultra-wideband absorption. Moreover, it remains ultra-wideband and high absorption over a wide angular range of incidence around 40°, and an absorption band above 90% even for 70° incident angle. The proposed phosphorene-based absorber has potentials in THz detectors, thermal emitters, etc.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.A. Munk, Frequency Selective Surfaces (John Wiley & Sons, 2000)

  2. W.H. Emerson, IEEE Trans. Antennas Propag. 21, 484 (1973)

    Article  ADS  Google Scholar 

  3. J.S. Ponraj, Z.Q. Xu, S.C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y.P. Zhang, S.J. Li, H. Zhang, Q.L. Bao, Nanotechnology 27, 462001 (2016)

    Article  Google Scholar 

  4. X. Huang, T. Leng, K. Hsin Chang, J.C. Chen, K.S. Novoselov, Z. Hu, 2D Mater. 3, 025021 (2016)

    Article  Google Scholar 

  5. S. He, T. Chen, IEEE Trans. Terahertz Sci. Technol. 3, 757 (2013)

    Article  ADS  Google Scholar 

  6. X. Huang, T. Leng, X. Zhang, J.C. Chen, K.H. Chang, A.K. Geim, K.S. Novoselov, Z. Hu, Appl. Phys. Lett. 106, 203105 (2015)

    Article  ADS  Google Scholar 

  7. Y. Jiang, Y. Wang, D.B. Ge, S.M. Li, W.P. Cao, X. Gao, X.H. Yu, Acta Phys. Sin. 65, 054101 (2016)

    Google Scholar 

  8. J. Wang, C.N. Gao, Y. Jiang, C.N. Akwuruoha, Chin. Phys. B 26, 114102 (2017)

    Article  ADS  Google Scholar 

  9. Y. Jiang, H. Zhang, J. Wang, C. Gao, J. Wang, W. Cao, Opt. Lett. 43, 4296 (2018)

    Article  ADS  Google Scholar 

  10. Z. Xu, D. Wu, Y. Liu, C. Liu, Z. Yu, L. Yu, H. Ye, Nanoscale Res. Lett. 13, 143 (2018)

    Article  ADS  Google Scholar 

  11. Y. Jiang, W. Chen, J. Wang, Opt. Express 26, 24403 (2018)

    Article  ADS  Google Scholar 

  12. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  13. A.N. Grigorenko, M. Polini, K.S. Novoselov, Nat. Photonics 6, 749 (2012)

    Article  ADS  Google Scholar 

  14. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  15. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  ADS  Google Scholar 

  16. Q. Fo, L. Pan, X. Chen, Q. Xu, C. Ouyang, X. Zhang, Z. Tian, J. Gu, L. Liu, J. Han, W. Zhang, IEEE Photonics J. 10, 4500709 (2018)

    Article  Google Scholar 

  17. J. Ma, S.B. Lu, Z.N. Guo, X.D. Xu, H. Zhang, D.Y. Tang, D.Y. Fan, Opt. Express 23, 22643 (2015)

    Article  ADS  Google Scholar 

  18. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, ACS Nano 8, 4033 (2014)

    Article  Google Scholar 

  19. J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, Nat. Commun. 5, 4475 (2014)

    Article  ADS  Google Scholar 

  20. Y. Xue, Z.D. Xie, Z.L. Ye, X.P. Hu, J.L. Xu, H. Zhang, Chin. Opt. Lett. 16, 020018 (2018)

    Article  ADS  Google Scholar 

  21. A. Castellanos-Gomez, J. Phys. Chem. Lett. 6, 4280 (2015)

    Article  Google Scholar 

  22. H. Du, X. Lin, Z. Xu, D. Chu, J. Mater. Chem. C 3, 8760 (2015)

    Article  Google Scholar 

  23. N.M. Latiff, W.Z. Teo, Z. Sofer, A.C. Fisher, M. Pumera, Chem. Eur. J. 21, 13991 (2015)

    Article  Google Scholar 

  24. Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, P.K. Chu, Adv. Funct. Mater. 25, 6996 (2015)

    Article  Google Scholar 

  25. S.C. Dhanabalan, J.S. Ponraj, Z. Guo, S. Li, Q. Bao, H. Zhang, Adv. Sci. 4, 1600305 (2017)

    Article  Google Scholar 

  26. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K.M. Abramski, Appl. Phys. Lett. 107, 051108 (2015)

    Article  ADS  Google Scholar 

  27. Y. Wang, G. Huang, H. Mu, S. Lin, J. Chen, S. Xiao, Q. Bao, J. He, Appl. Phys. Lett. 107, 091905 (2015)

    Article  ADS  Google Scholar 

  28. S. Zhang, Y. Li, X. Zhang, N. Dong, K. Wang, D. Hanlon, J.N. Coleman, L. Zhang, J. Wang, Nanoscale 8, 17373 (2016)

    Google Scholar 

  29. J. Liu, Y. Chen, Y. Li, H. Zhang, S. Zheng, S. Xu, Photonics Res. 6, 198 (2018)

    Article  Google Scholar 

  30. J. Wang, Y. Xing, L. Chen, S. Li, H. Jia, J. Zhu, Z. Wei, J. Lightwave Technol. 36, 2010 (2018)

    Article  ADS  Google Scholar 

  31. X. Su, Y. Wang, B. Zhang, R. Zhao, K. Yang, J. He, Q. Hu, Z. Jia, X. Tao, Opt. Lett. 41, 1945 (2016)

    Article  ADS  Google Scholar 

  32. J. Wang, Y. Jiang, Opt. Express 25, 5206 (2017)

    Article  ADS  Google Scholar 

  33. J. Wang, Y. Jiang, Z. Hu, Opt. Express 25, 22149 (2017)

    Article  ADS  Google Scholar 

  34. Z. Liu, K. Aydin, Nano Lett. 16, 3457 (2016)

    Article  ADS  Google Scholar 

  35. G.T. Ruck, D.E. Barrick, W.D. Stuart, Radar Cross Section Handbook (Plenum, 1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Jiang, Y. A phosphorene-based metasurface absorber operating in ultra-wideband terahertz regime. Eur. Phys. J. D 73, 255 (2019). https://doi.org/10.1140/epjd/e2019-100352-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100352-8

Keywords

Navigation