Skip to main content
Log in

Four-electrodes DBD plasma jet device with additional floating electrode

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A Dielectric Barrier Discharge (DBD) plasma jet in a four electrodes configuration was investigated in order to improve the discharge parameters, such as discharge power and rotational and vibrational temperatures of molecular species in the plasma plume. The improvement attempts were made by introducing an auxiliary floating electrode in a form of a metallic pin inside the DBD device. That piece was placed near the bottom of the main device, centered in relation to the four powered electrodes, which were covered with a dielectric material. By using metallic pins with different lengths, it was observed that there were considerable variations of the plasma parameters as a function of the pin length. Two carrier gases were tested: argon and helium. With helium as the working gas, it was found that there is an optimal pin length that maximizes the plasma power and its vibrational temperature. In addition, it was verified that for the pin of optimum length the relative intensity of light emissions from OH and NO species achieved higher values than in other conditions studied.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Y. Moon, W. Choe, B.K. Kang, Appl. Phys. Lett. 84, 188 (2004).

    Article  ADS  Google Scholar 

  2. N. Masoud, K. Martus, M. Figus, K. Becker, Contrib. Plasma Phys. 45, 30 (2005).

    Article  ADS  Google Scholar 

  3. X. Lu, Q. Xiong, Z. Xiong, J. Hu, et al., J. Appl. Phys. 105, 043304 (2009).

    Article  ADS  Google Scholar 

  4. P. Rajasekaran, N. Bibinov, P. Awakowicz, Meas. Sci. Technol. 23, 085605 (2012).

    Article  ADS  Google Scholar 

  5. X. Lu, G.V. Naidis, M. Laroussi, K. Ostrikov, Phys. Rep. 540, 123 (2014).

    Article  ADS  Google Scholar 

  6. K.G. Kostov, T.M.C. Nishime, M. Machida, A.C. Borges, V. Prysiazhnyi, C.Y. Koga-Ito, Plasma Process. Polym. 12, 1383 (2015).

    Article  Google Scholar 

  7. Y.T. Lin, IEEE Trans. Plasma Sci. 47, 1134 (2019).

    Article  ADS  Google Scholar 

  8. C. Wang, N. Srivastava, Eur. Phys. J. D 60, 465 (2010).

    Article  ADS  Google Scholar 

  9. J. Lalor, L. Scally, P.J. Cullen, V. Milosavljevic, J. Vac. Sci. Technol. A 36, 03E108 (2018).

    Article  Google Scholar 

  10. A. Khlyustova, C. Labay, Z. Machala, M.P. Ginebra, C. Canal, Front. Chem. Sci. Eng. 13, 238 (2019).

    Article  Google Scholar 

  11. B. Ghimire, E.J. Szili, P. Lamichhane, R.D. Short, J.S. Lim, P. Attri, et al., Appl. Phys. Lett. 114, 093701 (2019).

    Article  ADS  Google Scholar 

  12. U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003).

    Article  Google Scholar 

  13. R. Bazinette, J. Paillol, J.F. Lelièvre, F. Massines, Plasma Processes Polym. 13, 1015 (2016).

    Article  Google Scholar 

  14. R. Brandenburg, Plasma Sources Sci. Technol. 26, 053001 (2017).

    Article  ADS  Google Scholar 

  15. V. Jokinen, P. Suvanto, S. Franssila, Biomicrofluidics 6, 016501 (2012).

    Article  Google Scholar 

  16. I. Adamovich, S.D. Baalrud, A. Bogaerts, P.J. Bruggeman, et al., J. Phys. D: Appl. Phys. 50, 323001 (2017).

    Article  Google Scholar 

  17. J.D. Lambert, Q. Rev, Chem. Soc. 21, 67 (1967).

    Google Scholar 

  18. R.R. Smith, D.R. Killelea, D.F. DelSesto, A.L. Utz, Science 304, 992 (2004).

    Article  ADS  Google Scholar 

  19. F. do Nascimento, M. Machida, M.A. Canesqui, S.A. Moshkalev, , IEEE Trans. Plasma Sci. 45, 346 (2017).

    Article  ADS  Google Scholar 

  20. M. Keidar, R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta, et al., Br. J. Cancer 105, 1295 (2011).

    Article  Google Scholar 

  21. D.B. Graves, J. Phys. D: Appl. Phys. 45, 263001 (2012).

    Article  ADS  Google Scholar 

  22. S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, et al., Appl. Phys. Lett. 100, 113702 (2012).

    Article  ADS  Google Scholar 

  23. M. Wang, B. Holmes, X. Cheng, W. Zhu, M. Keidar, L. Zhang, PLoS One 8, e73741 (2013).

    Article  ADS  Google Scholar 

  24. J.W. Chang, S.U. Kang, Y.S. Shin, K.I. Kim, et al., Arch. Biochem. Biophys. 545, 133 (2014).

    Article  Google Scholar 

  25. A.M. Hirst, M.S. Simms, V.M. Mann, N.J. Maitland, D. O’Connell, F.M. Frame, Br. J. Cancer 112, 1536 (2015).

    Article  Google Scholar 

  26. X. Lu, G.V. Naidis, M. Laroussi, S. Reuter, D.B. Graves, K. Ostrikov, Phys. Rep. 630, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Duan, X. Lu, G. He, Phys. Plasmas 24, 073506 (2017).

    Article  ADS  Google Scholar 

  28. D. Yan, W. Xu, X. Yao, L. Lin, J.H. Sherman, M. Keidar, Sci. Rep. 8, 15418 (2018).

    Article  ADS  Google Scholar 

  29. K. Urabe, T. Morita, K. Tachibana, B.N. Ganguly, J. Phys. D: Appl. Phys. 43, 095201 (2010).

    Article  ADS  Google Scholar 

  30. H. Yamada, H. Sakakita, S. Kato, J. Kim, S. Kiyama, M. Fujiwara, et al., J. Phys. D: Appl. Phys. 49, 394001 (2016).

    Article  Google Scholar 

  31. R. Zaplotnik, M. Bišćan, D. Popović, M. Mozetič, S. Milošević, Plasma Sources Sci. Technol. 25, 035023 (2016).

    Article  ADS  Google Scholar 

  32. T. Darny, J.M. Pouvesle, V. Puech, C. Douat, S. Dozias, E. Robert, Plasma Sources Sci. Technol. 26, 045008 (2017).

    Article  ADS  Google Scholar 

  33. F. do Nascimento, M. Machida, K. Kostov, S. Moshkalev, et al., Eur. Phys. J. D 71, 274 (2017).

    Article  ADS  Google Scholar 

  34. M. Holub, Int. J. Appl. Electromagn. Mech. 39, 81 (2012).

    Article  Google Scholar 

  35. D.E. Ashpis, M.C. Laun, E.L. Griebeler, AIAA J. 55, 2254 (2017).

    Article  ADS  Google Scholar 

  36. D. Staack, B. Farouk, A.F. Gutsol, A.A. Fridman, Plasma Sources Sci. Technol. 15, 818 (2006).

    Article  Google Scholar 

  37. P.J. Bruggeman, N. Sadeghi, D.C. Schram, V. Linss, Plasma Sources Sci. Technol. 23, 023001 (2014).

    Article  ADS  Google Scholar 

  38. SpecAir Software, http://specair-radiation.net/ (last access in June 2019).

  39. X.-M. Zhu, Y.-K. Pu, J. Phys. D: Appl. Phys. 43, 403001 (2010).

    Article  Google Scholar 

  40. D. Xiao, C. Cheng, J. Shen, Y. Lan, H. Xie, X. Shu, Y. Meng, J. Li, P.K. Chu, J. Appl. Phys. 115, 033303 (2014).

    Article  ADS  Google Scholar 

  41. T. Belmonte, C. Noël, T. Gries, J. Martin, G. Henrion, Plasma Sources Sci. Technol. 24, 064003 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Machida, suggested the insertion of a oating electrode into the four-electrodes device. F. Nascimento elaborated the experiments and performed the data analysis. K. G. Kostov assisted in the execution of the experiments, data acquisition and interpretation of the results. S. Moshkalev, as well as the other authors, participated with important discussions about the results achieved in the work.

Corresponding author

Correspondence to Fellype do Nascimento.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, F., Machida, M., Kostov, K.G. et al. Four-electrodes DBD plasma jet device with additional floating electrode. Eur. Phys. J. D 74, 14 (2020). https://doi.org/10.1140/epjd/e2019-100343-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100343-9

Keywords

Navigation