Skip to main content

Modelling of inhomogeneous mixing of plasma species in argon–steam arc discharge for broad range of operating conditions

Abstract

Numerical simulation of mixing of argon- and water-plasma species in argon-steam arc discharge has been investigated in thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. Mixing process is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon “gas”, with respect to steam “gas”. Calculations for currents 150–600 A with 15–40 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. However, calculations for currents higher than 400 A were not straightforward and a phenomenon of premixing of argon and steam species in the upstream discharge region was predicted from modelling to obtain reasonable agreement with experimental data. Premixed argon-steam plasma has a global impact on the plasma jet parameters near the exit nozzle as well as on the overall arc performance. The results of thermo-fluid fields, species mole fractions and radiation losses from the discharge are presented and discussed. Our former calculations based on the homogeneous mixing assumption differ from the present model in temperature, enthalpy, radiation losses, and flow field. Comparison with available experiments exhibits very good qualitative and quantitative agreements for the radial temperature profiles and satisfactory agreement for the velocity profiles 2 mm downstream of the exit nozzle.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Fauchais, A. Vardelle, IEEE Trans. Plasma Sci. 25, 1258 (1997)

    ADS  Article  Google Scholar 

  2. 2.

    E. Pfender, Plasma Chem. Plasma Process. 19, 1 (1999)

    Article  Google Scholar 

  3. 3.

    A.B. Murphy, B. Hiraoka, J. Phys. D: Appl. Phys. 33, 2183 (2000)

    ADS  Article  Google Scholar 

  4. 4.

    A.B. Murphy, Phys. Rev. E 55, 7473 (1997)

    ADS  Article  Google Scholar 

  5. 5.

    J.O. Hirschfelder, C.F. Curtiss, J. Chem. Phys. 17, 1076 (1949)

    ADS  Article  Google Scholar 

  6. 6.

    J.D. Ramshaw, J. Non-Equilib, Thermodyn. 15, 295 (1990)

    Google Scholar 

  7. 7.

    R. Taylor, R. Krishna, Multicomponent Mass Transfer (Wiley, New York, 1993)

  8. 8.

    J.D. Ramshaw, C.H. Chang, J. Non-Equilib. Thermodyn. 21, 223 (1996)

    ADS  Google Scholar 

  9. 9.

    J.D. Ramshaw, C.H. Chang, Plasma Chem. Plasma Process. 11, 395 (1991)

    Article  Google Scholar 

  10. 10.

    A.B. Murphy, Phys. Rev. E 48, 3594 (1993)

    ADS  Article  Google Scholar 

  11. 11.

    A.B. Murphy, J. Phys. D: Appl. Phys. 31, 3383 (1998)

    ADS  Article  Google Scholar 

  12. 12.

    A.B. Murphy, Phys. Rev. Lett. 73, 1797 (1994)

    ADS  Article  Google Scholar 

  13. 13.

    S. Ghorui, M. Vysohlid, J.V.R. Heberlein, E. Pfender, Phys. Rev. E 76, 016404 (2007)

    ADS  Article  Google Scholar 

  14. 14.

    A.M. Fudolig, H. Nogami, J. Yagi, ISIJ Int. 36, 1222 (1996)

    Article  Google Scholar 

  15. 15.

    V. Colombo, C. Deschenaux, E. Ghedini, M. Gherardi, C. Jaeggi, M. Leparoux, V. Mani, P. Sanibondi, Plasma Sources Sci. Technol. 21, 045010 (2012)

    ADS  Article  Google Scholar 

  16. 16.

    M. Schnick, U. Fuessel, M. Hertel, M. Haessler, A. Spille-Kohoff, A.B. Murphy, J. Phys. D: Appl. Phys. 43, 434008 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    H.-P. Li, X. Chen, Plasma Chem. Plasma Process. 22, 27 (2002)

    Article  Google Scholar 

  18. 18.

    H.X. Wang, X. Chen, H.-P. Li, Plasma Chem. Plasma Process. 31, 373 (2011)

    Article  Google Scholar 

  19. 19.

    F. Yang, M. Rong, Y. Wu, R. Ma, A.B. Murphy, H. He, F. Bai, IEEE Trans. Plasma Sci. 39, 2862 (2011)

    ADS  Article  Google Scholar 

  20. 20.

    M. Hrabovský, V. Kopecký, V. Sember, T. Kavka, O. Chumak, M. Konrád, IEEE Trans. Plasma Sci. 34, 1566 (2006)

    ADS  Article  Google Scholar 

  21. 21.

    M. Hrabovský, Open Plasma Phys. J. 2, 99 (2009)

    ADS  Article  Google Scholar 

  22. 22.

    Y. Ando, N. Yoshimasa, A. Kobayashi, Vacuum 110, 190 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    S.W. Chau, S.Y. Lub, P.J. Wang, Comput. Phys. Commun. 182, 152 (2011)

    ADS  Article  Google Scholar 

  24. 24.

    S.W. Chau, C.M. Tai, S.H. Chen, IEEE Trans. Plasma Sci. 42, 3797 (2014)

    ADS  Article  Google Scholar 

  25. 25.

    P. Chraska, J. Dubsky, K. Neufuss, J. Pisacka, J. Therm. Spray Technol. 6, 320 (1997)

    ADS  Article  Google Scholar 

  26. 26.

    P. Ctibor, O. Roussel, A. Tricoire, J. Eur. Ceram. Soc. 23, 2993 (2003)

    Article  Google Scholar 

  27. 27.

    J. Matejicek, Y. Koza, V. Weinzettl, Fusion Eng. Des. 75–79, 395 (2005)

    Article  Google Scholar 

  28. 28.

    T. Chráska, K. Neufuss, J. Dubský, P. Ctibor, P. Rohan, Ceram. Int. 34, 1229 (2008)

    Article  Google Scholar 

  29. 29.

    H. Ageorges, P. Ctibor, Surf. Coat. Technol. 202, 4362 (2008)

    Article  Google Scholar 

  30. 30.

    J. Matejicek, T. Kavka, G. Bertolissi, P. Ctibor, M. Vilemova, R. Musalek, B. Nevrla, J. Therm. Spray Technol. 22, 744 (2013)

    ADS  Article  Google Scholar 

  31. 31.

    R. Musalek, G. Bertolissi, J. Medricky, J. Kotlan, Z. Pala, N. Curry, Surf. Coat. Technol. 268, 58 (2015)

    Article  Google Scholar 

  32. 32.

    P. Ctibor, J. Čížek, J. Sedláček, F. Lukáč, J. Am. Ceram. Soc. 100, 2972 (2017)

    Article  Google Scholar 

  33. 33.

    G. Van Oost, M. Hrabovský, V. Kopecký, M. Konrád, M. Hlína, T. Kavka, O. Chumak, E. Beeckman, J. Verstraeten, Vacuum 80, 1132 (2006)

    ADS  Article  Google Scholar 

  34. 34.

    G. Van Oost, M. Hrabovský, V. Kopecký, M. Konrád, M. Hlna, T. Kavka, Vacuum 83, 209 (2009)

    ADS  Article  Google Scholar 

  35. 35.

    M. Hlína, M. Hrabovský, T. Kavka, M. Konrád, Waste Manage. 34, 63 (2014)

    Article  Google Scholar 

  36. 36.

    N. Agon, M. Hrabovský, O. Chumak, M. Hlína, V. Kopecký, A. Mašláni, A. Bosmans, L. Helsen, S. Skoblja, G. Van Oost, J. Vierendeels, Waste Manage. 47, 246 (2016)

    Article  Google Scholar 

  37. 37.

    M. Hrabovský, M. Hlína, V. Kopecký, A. Mašláni, O. Živný, P. Křenek, A. Serov, O. Hurba, Plasma Chem. Plasma Process. 37, 739 (2017)

    Article  Google Scholar 

  38. 38.

    I. Hirka, O. Živný, M. Hrabovský, Plasma Chem. Plasma Process. 37, 947 (2017)

    Article  Google Scholar 

  39. 39.

    J. Jenista, IEEE Trans. Plasma Sci. 32, 464 (2004)

    ADS  Article  Google Scholar 

  40. 40.

    R.W. Liebermann, J.J. Lowke, J. Quant. Spectrosc. Radiat. Transf. 16, 253 (1976)

    ADS  Article  Google Scholar 

  41. 41.

    V.G. Sevast’yanenko, J. Eng. Phys. 36, 138 (1979)

    Article  Google Scholar 

  42. 42.

    J. Jeništa, H. Takana, H. Nishiyama, P. Křenek, M. Bartlová, V. Aubrecht, IEEE Trans. Plasma Sci. 39, 2892 (2011)

    ADS  Article  Google Scholar 

  43. 43.

    J. Jeništa, H. Takana, H. Nishiyama, M. Bartlová, V. Aubrecht, P. Křenek, V. Sember, A. Mašláni, Comput. Phys. Commun. 182, 1776 (2011)

    ADS  Article  Google Scholar 

  44. 44.

    S.B. Pope, Turbulent Flows (Cambridge University Press, 2000)

  45. 45.

    J. Jeništa, H. Takana, H. Nishiyama, M. Bartlová, V. Aubrecht, P. Křenek, J. Therm. Sci. Technol. 8, 435 (2013)

    Article  Google Scholar 

  46. 46.

    J. Jeništa, H. Takana, H. Nishiyama, M. Bartlová, V. Aubrecht, P. Křenek, J. Phys.: Conf. Ser. 550, 012016 (2014)

    Google Scholar 

  47. 47.

    J. Jeništa, V. Kopecký, M. Hrabovský, in Heat and Mass Transfer under Plasma Conditions, edited by P. Fauchais et al. (Annals of the New York Academy of Sciences, 1999) Vol. 891, p. 64

  48. 48.

    J. Jeništa, J. Phys. D: Appl. Phys. 32, 2763 (1999)

    ADS  Article  Google Scholar 

  49. 49.

    J. Jeništa, H. Takana, M. Hrabovský, H. Nishiyama, IEEE Trans. Plasma Sci. 36, 1060 (2008)

    ADS  Article  Google Scholar 

  50. 50.

    J. Jeništa, H. Takana, H. Nishiyama, M. Bartlova, V. Aubrecht, M. Hrabovsky, J. High Temp. Mater. Process. 14, 55 (2010)

    Article  Google Scholar 

  51. 51.

    J. Jeništa, H. Takana, H. Nishiyama, M. Bartlová, V. Aubrecht, P. Křenek, M. Hrabovský, T. Kavka, V. Sember, A. Mašláni, J. Phys. D: Appl. Phys. 44, 435204 (2011)

    ADS  Article  Google Scholar 

  52. 52.

    J. Jeništa, H. Takana, H. Nishiyama, M. Bartlová, V. Aubrecht, P. Křenek, IEEE Trans. Plasma Sci. 42, 2632 (2014)

    ADS  Article  Google Scholar 

  53. 53.

    J. Jeništa, H. Takana, S. Uehara, H. Nishiyama, M. Bartlová, V. Aubrecht, A.B. Murphy, J. Phys. D: Appl. Phys. 51, 045202 (2018)

    ADS  Article  Google Scholar 

  54. 54.

    P. Ondáč, A. Mašláni, M. Hrabovský, J. Jeništa, Plasma Chem. Plasma Process. 38, 637 (2018)

    Article  Google Scholar 

  55. 55.

    A.B. Murphy, J. Phys. D: Appl. Phys. 34, R151 (2001)

    ADS  Article  Google Scholar 

  56. 56.

    V. Aubrecht, J.J. Lowke, J. Phys. D: Appl. Phys. 27, 2066 (1994)

    ADS  Article  Google Scholar 

  57. 57.

    M. Bartlová, V. Aubrecht, Czech. J. Phys. 56, B632 (2006)

    Article  Google Scholar 

  58. 58.

    A.B. Murphy, Sci. Rep. 4, 1 (2014)

    Google Scholar 

  59. 59.

    K. Cheng, X. Chen, Int. J. Heat Mass. Transfer 47, 5139 (2004)

    Article  Google Scholar 

  60. 60.

    A.B. Murphy, C.J. Arundell, Plasma Chem. Plasma Process. 14, 451 (1994)

    Article  Google Scholar 

  61. 61.

    J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)

  62. 62.

    S. Chapman, T.G. Cowling, in The Mathematical Theory of Non-uniform Gases, 3rd edn. (Cambridge University Press, 1970)

  63. 63.

    J.H. Ferziger, H.G. Kaper, in Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972)

  64. 64.

    A.B. Murphy, Plasma Chem. Plasma Process. 20, 279 (2000)

    Article  Google Scholar 

  65. 65.

    J.M. Baronnet, G. Debbagh-Noir, J. Lesinski, E. Meillot, in Proceedings of the 7th International Symposium on Plasma Chemistry, Eindhoven, 1985 (1985), p. 836

  66. 66.

    N. Matsunaga, A. Magashima, J. Phys. Chem. 87, 5268 (1983)

    Article  Google Scholar 

  67. 67.

    B. Amaee, W.B. Brown, Chem. Phys. 174, 351 (1993)

    Article  Google Scholar 

  68. 68.

    J.R. Stallcop, H. Partridge, E. Levin, Phys. Rev. A 64, 042722 (2001)

    ADS  Article  Google Scholar 

  69. 69.

    G. Chambaud, J.M. Launey, B. Levy, P. Millie, E. Roueff, F. Minh Tran, J. Phys. B: At. Mol. Phys. 13, 4205 (1980)

    ADS  Article  Google Scholar 

  70. 70.

    G.D. Flesch, C.Y. Ng, J. Chem. Phys. 94, 2372 (1991)

    ADS  Article  Google Scholar 

  71. 71.

    J.A. Fedchak, M.A. Huels, L.D. Doverspike, R.L. Champion, Phys. Rev. A 47, 3796 (1993)

    ADS  Article  Google Scholar 

  72. 72.

    Y. Itikawa, At. Data Nucl. Data Tables 21, 69 (1978)

    ADS  Article  Google Scholar 

  73. 73.

    P. André, L. Brunet, W. Bussière, J. Caillard, J.M. Lombard, J.P. Picard, Eur. Phys. J. Appl. Phys. 25, 169 (2004)

    ADS  Article  Google Scholar 

  74. 74.

    R.A. Svehla, B.J. McBride, NASA Technical Note TN-D-7056, 1973

  75. 75.

    X.N. Zhang, A.B. Murphy, H.-P. Li, W.D. Xia, Plasma Sources Sci. Technol. 23, 065044 (2014)

    ADS  Article  Google Scholar 

  76. 76.

    J. Jeništa, J. Phys. D: Appl. Phys. 36, 2995 (2003)

    ADS  Article  Google Scholar 

  77. 77.

    S. Yoon, A. Jameson, AIAA J. 26, 1025 (1988)

    ADS  Article  Google Scholar 

  78. 78.

    D. Kwak, C. Kiris, J. Housman, Comput. Fluids 41, 51 (2011)

    MathSciNet  Article  Google Scholar 

  79. 79.

    P.L. Roe, J. Comput. Phys. 43, 357 (1981)

    ADS  MathSciNet  Article  Google Scholar 

  80. 80.

    B. van Leer, J. Comput. Phys 32, 101 (1979)

    ADS  Article  Google Scholar 

  81. 81.

    T.J. Chung, Computational Fluid Dynamics, 2nd edn. (Cambridge University Press, New York, 2010)

  82. 82.

    J. Jeništa, J. High Temp. Mater. Process. 7, 11 (2003)

    Article  Google Scholar 

  83. 83.

    P. Křenek, Plasma Chem. Plasma Process. 28, 107 (2008)

    Article  Google Scholar 

  84. 84.

    T. Kavka, A. Maslani, O. Chumak, M. Hrabovský, in Proceedings of the 5th International Conference on Flow Dynamics, Sendai, 2008, edited by S. Maruyama (LOC of the 5th ICFD, 2008) p. OS8–11

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiří Jeništa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeništa, J., Takana, H., Nishiyama, H. et al. Modelling of inhomogeneous mixing of plasma species in argon–steam arc discharge for broad range of operating conditions. Eur. Phys. J. D 74, 22 (2020). https://doi.org/10.1140/epjd/e2019-100254-3

Download citation

Keywords

  • Plasma Physics