Skip to main content
Log in

Polarization rotation enhanced upon optical tunneling through photonic crystals filled with Bi:YIG\SiO2 nanoparticle

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Two-dimensional photonic crystals (PCs) have a good modulation effect on the in-plane propagating light field, which enhance the Faraday rotation of MO material. However, for the axially propagating light field, the effect of PCs is limited. To overcome this, we present a method that is based on optical tunneling, and a large Faraday rotation and small ellipticity can be achieved through a Bi:YIG nanoparticle that is coated with a low-index SiO2 material. This model is composed of a Glass matrix of two-dimensional PCs filled with a Bi:YIG\ SiO2 nanoparticle at the point defect, which is compatible with traditional processes. The conversion of linear polarized light propagating axially was simulated by the finite difference time domain algorithm with MATLAB. The suggested model has Faraday rotation and an ellipticity of θF = 24.06° and εF = 0.012 for the wavelength λ = 975 nm.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sakoda, T. Ueta, K. Ohtaka, Phys. Rev. B 56, 14905 (1997)

    Article  ADS  Google Scholar 

  2. K. Sakoda, Optical Properties of Photonic Crystals, 2nd edn. (Springer, 2004)

  3. Y. Shoji, T. Mizumoto, H. Yokoi, I. Wei Hsieh, R.M. Osgood, Appl. Phys. Lett. 92, 071117 (2008)

    Article  ADS  Google Scholar 

  4. M. Inoue, K. Arai, T. Fuji, M. Abe, J. Appl. Phys. 85, 5768 (1999)

    Article  ADS  Google Scholar 

  5. S. Sakaguchi, N. Sugimoto, J. Lightwave Technol. 17, 1087 (1999)

    Article  ADS  Google Scholar 

  6. I.L. Lyubchanskii, N.N. Dadoenkova, M.I. Lyubchanskii, E.A. Shapovalov, Th Rasing, J. Phys. D: Appl. Phys. 36, R277 (2003)

    Article  ADS  Google Scholar 

  7. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P.B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, A. Granovsky, J. Phys. D: Appl. Phys. 39, R151 (2006)

    Article  ADS  Google Scholar 

  8. Y. Ikezawa, K. Nishimura, H. Uchida, M. Inoue, J. Magn. Magn. Mater. 272, 1690 (2004)

    Article  ADS  Google Scholar 

  9. Z. Wang, S. Fan, Appl. Phys. B: Lasers Opt. 81, 369 (2005)

    Article  ADS  Google Scholar 

  10. Z. Wang, S. Fan, Photonic. Nanostruct. 4, 132 (2006)

    Article  ADS  Google Scholar 

  11. J. Liu, S. Wang, S. Deng, Y. Wang, J. Zhang, Opt. Commun. 402, 319 (2017)

    Article  ADS  Google Scholar 

  12. R.M.A. Azzam, C.L. Spinu, Opt. Lett. 30, 3183 (2005)

    Article  ADS  Google Scholar 

  13. S.I. Azzam, S.S.A. Obayya, Opt. Lett. 40, 1061 (2015)

    Article  ADS  Google Scholar 

  14. A. Melnyk, M.H. Bitarafan, T.W. Allen, R.G. DeCorby, Opt. Lett. 41, 1845 (2016)

    Article  ADS  Google Scholar 

  15. L. Sun, S. Jiang, J.D. Zuegel, J.R. Marciante, Opt. Lett. 34, 1699 (2009)

    Article  ADS  Google Scholar 

  16. L.D.S. Alcantara, F.L. Teixeira, A.C. César, B.-H.V. Borges, J. Lightwave Technol. 23, 2579 (2005)

    Article  ADS  Google Scholar 

  17. Q. Chen, Q. Wang, Q. Ma, H. Wang, J. Non-Cryst. Solids 464, 14 (2017)

    Article  ADS  Google Scholar 

  18. J.-Q. Xi, J.K. Kim, E.F. Schubert, D. Ye, T.-M. Lu, S.-Y. Lin, J.S. Juneja, Opt. Lett. 31, 601 (2006)

    Article  ADS  Google Scholar 

  19. F. de Fornel, Evanescent Waves: From Newtonian Optics to Atomic Optics (Springer, 2001)

  20. A.K. Zvezdin, V.A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Ltd., 1997)

  21. H.P. Fu, R.Y. Hong, Y.J. Wu, G.Q. Di, B. Xu, Y. Zheng, D.G. Wei, J. Magn. Magn. Mater. 320, 2584 (2008)

    Article  ADS  Google Scholar 

  22. H. Kato, M. Inoue, J. Appl. Phys. 91, 7017 (2002)

    Article  ADS  Google Scholar 

  23. K. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966)

    Article  ADS  Google Scholar 

  24. J.-P. Berenger, IEEE Trans. Antennas Propag. 45, 466 (1997)

    Article  ADS  Google Scholar 

  25. F. Choueikani, F. Royer, S. Douadi, A. Skora, D. Jamon, D. Blanc, A. Siblini, Eur. Phys. J. Appl. Phys. 47, 30401 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangbao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, S. & Wang, J. Polarization rotation enhanced upon optical tunneling through photonic crystals filled with Bi:YIG\SiO2 nanoparticle. Eur. Phys. J. D 73, 229 (2019). https://doi.org/10.1140/epjd/e2019-100245-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100245-4

Keywords

Navigation