Reactive molecular dynamics simulations of organometallic compound W(CO)6 fragmentation,

Abstract

Irradiation- and collision-induced fragmentation studies provide information about geometry, electronic properties and interactions between structural units of various molecular systems. Such knowledge brings insights into irradiation-driven chemistry of molecular systems which is exploited in different technological applications. An accurate atomistic-level simulation of irradiation-driven chemistry requires reliable models of molecular fragmentation which can be verified against mass spectrometry experiments. In this work fragmentation of a tungsten hexacarbonyl, W(CO)6, molecule is studied by means of reactive molecular dynamics simulations. The quantitatively correct fragmentation picture including different fragmentation channels is reproduced. We show that distribution of the deposited energy over all degrees of freedom of the parent molecule leads to thermal evaporation of CO groups and the formation of W(CO)n+ (n = 0 – 5) fragments. Another type of fragments, WC(CO)n+ (n = 0 – 4), is produced due to cleavage of a C–O bond as a result of localized energy deposition. Calculated fragment appearance energies are in good agreement with experimental data. These fragmentation mechanisms have a general physical nature and should take place in radiation-induced fragmentation of different molecular and biomolecular systems.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J.P. Connerade, A.V. Solov’yov (eds.), Latest Advances in Atomic Cluster Collisions: Structure and Dynamics from the Nuclear to the Biological Scale (Imperial College Press, London, UK, 2008)

  2. 2.

    G. García Gómez-Tejedor, M.C. Fuss (eds.), Radiation Damage in Biomolecular Systems (Springer Science + Business Media B.V., Dordrecht, The Netherlands, 2012)

    Google Scholar 

  3. 3.

    R.M. Sweet, A.D. Woodhead (eds.), Synchrotron Radiation in Structural Biology (Springer-Verlag, US, Boston, MA, 1989)

    Google Scholar 

  4. 4.

    T. Schlathölter, F. Alvarado, R. Hoekstra, Nucl. Instrum. Methods B 233, 62 (2005)

    ADS  Article  Google Scholar 

  5. 5.

    R. Spezia, A. Martin-Somer, V. Macaluso, Z. Homayoon, S. Pratihar, W.L. Hase, Faraday Discuss. 195, 599 (2016)

    ADS  Article  Google Scholar 

  6. 6.

    J.C. Poully, J. Miles, S. De Camillis, A. Cassimi, J.B. Greenwood, Phys. Chem. Chem. Phys. 17, 7172 (2015)

    Article  Google Scholar 

  7. 7.

    A.V. Solov’yov (ed.), , Nanoscale Insights into Ion-Beam Cancer Therapy (Springer International Publishing, Cham, Switzerland, 2017)

    Google Scholar 

  8. 8.

    I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol. B 26, 1197 (2008)

    Article  Google Scholar 

  9. 9.

    S. Utke, P. Moshkalev(eds.), Russel, Nanofabrication Using Focused Ion and Electron Beams Principles and Applications 9Oxford University Press, New York, NY, 2012)

  10. 10.

    M. Huth, F. Porrati, O.V. Dobrovolskiy, Microelectron. Eng. 185–186, 9 (2018)

    Article  Google Scholar 

  11. 11.

    J.M. De Teresa, A. Fernández-Pacheco, R. Córdoba, L. Serrano-Ramón, S. Sangiao, M.R. Ibarra, J. Phys. D: Appl. Phys. 49, 243003 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, G. Fantner, Beilstein J. Nanotechnol. 3, 597 (2012)

    Article  Google Scholar 

  13. 13.

    T.P.R. Kumar, P. Weirich, L. Hrachowina, M. Hanefeld, R. Bjornsson, H.R. Hrodmarsson, S. Barth, D.H. Fairbrother, M. Huth, O. Ingólfsson, Beilstein J. Nanotechnol. 9, 555 (2018)

    Article  Google Scholar 

  14. 14.

    F. Porrati, M. Pohlit, J. Müller, S. Barth, F. Biegger, C. Gspan, H. Plank, M. Huth, Nanotechnology 26, 475701 (2015)

    ADS  Article  Google Scholar 

  15. 15.

    S. Beranová, C. Wesdemiotis, J. Am. Soc. Mass Spectrom. 5, 1093 (1994)

    Article  Google Scholar 

  16. 16.

    P.J. Clements, F.R. Sale, Metall. Trans. B 7, 171 (1976)

    Article  Google Scholar 

  17. 17.

    R.G. Cooks, T. Ast, B. Kralj, V. Kramer, D. Žigon, J. Am. Soc. Mass Spectrom. 1, 16 (1990)

    Article  Google Scholar 

  18. 18.

    V.H. Wysocki, H.I. Kenttämaa, R.G. Cooks, Int. J. Mass Spectrom. Ion Processes 75, 181 (1987)

    ADS  Article  Google Scholar 

  19. 19.

    R. Susič, L. Lu, D.E. Riederer Jr, D. Žigon, R.G. Cooks, T. Ast, J. Mass Spectrom. 27, 769 (1992)

    Google Scholar 

  20. 20.

    K. Wnorowski, M. Stano, C. Matias, S. Denifl, W. Barszczewska, Š. Matejčík, Rapid Commun. Mass Spectrom. 26, 2093 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    M. Allan, M. Lacko, P. Papp, Š. Matejčík, M. Zlatar, I.I. Fabrikant, J. Kočišek, J. Fedor, Phys. Chem. Chem. Phys. 20, 11692 (2018)

    Article  Google Scholar 

  22. 22.

    K. Wnorowski, M. Stano, W. Barszczewska, A. Jówko, Š. Matejčík, Int. J. Mass Spectrom. 314, 42 (2012)

    Article  Google Scholar 

  23. 23.

    M. Neustetter, E. Jabbour Al Maalouf, P. Limão Vieira, S. Denifl, J. Chem. Phys. 145, 054301 (2016)

    ADS  Article  Google Scholar 

  24. 24.

    M. Lacko, P. Papp, K. Wnorowski, Š. Matejčík, Eur. Phys. J. D 69, 84 (2015)

    ADS  Article  Google Scholar 

  25. 25.

    J. Lengyel, J. Fedor, M. Fárník, J. Phys. Chem. C 120, 17810 (2016)

    Article  Google Scholar 

  26. 26.

    G.B. Sushko, I.A. Solov’yov, A.V. Verkhovtsev, S.N. Volkov, A.V. Solov’yov, Eur. Phys. J. D 70, 12 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    G.B. Sushko, I.A. Solov’yov, A.V. Solov’yov, Eur. Phys. J. D 70, 217 (2016)

    ADS  Article  Google Scholar 

  28. 28.

    I.A. Solov’yov, A.V. Korol, A.V. Solov’yov, Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer (Springer International Publishing, Cham, Switzerland, 2017)

    Book  Google Scholar 

  29. 29.

    I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012)

    Article  Google Scholar 

  30. 30.

    P. de Vera, E. Surdutovich, N.J. Mason, F.J. Currell, A.V. Solov’yov, Eur. Phys. J. D 72, 147 (2018)

    ADS  Article  Google Scholar 

  31. 31.

    G.B. Sushko, I.A. Solov’yov, A.V. Solov’yov, J. Mol. Graphics Modell. 88, 247 (2019)

    Article  Google Scholar 

  32. 32.

    A. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Eur. Phys. J. D 71, 212 (2017)

    ADS  Article  Google Scholar 

  33. 33.

    A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 102, 3586 (1998)

    Article  Google Scholar 

  34. 34.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02 (Gaussian Inc., Wallingford, CT, 20160

  35. 35.

    S.V. Arnesen, H.M. Seip, Acta Chem. Scand. 20, 2711 (1966)

    Article  Google Scholar 

  36. 36.

    R.K. Szilagyi, G. Frenking, Organometallics 16, 4807 (1997)

    Article  Google Scholar 

  37. 37.

    A. Diefenbach, F.M. Bickelhaupt, G. Frenking, J. Am. Chem. Soc. 122, 6449 (2000)

    Article  Google Scholar 

  38. 38.

    L.G. Gerchikov, A.N. Ipatov, A.V. Solov’yov, W. Greiner, J. Phys. B: At. Mol. Opt. Phys. 33, 4905 (2000)

    ADS  Article  Google Scholar 

  39. 39.

    G.D. Michels, G.D. Flesch, H.J. Svec, Inorg. Chem. 19, 479 (1980)

    Article  Google Scholar 

  40. 40.

    R.E. Winters, R.W. Kiser, Inorg. Chem. 4, 157 (1965)

    Article  Google Scholar 

  41. 41.

    D.R. Bidinosti, N.S. McIntyre, Can. J. Chem. 45, 641 (1967)

    Article  Google Scholar 

  42. 42.

    A. Foffani, S. Pignataro, B. Cantone, F. Grasso, Z. Phys, Chem. 45, 79 (1965)

    Google Scholar 

  43. 43.

    F. Qi, S. Yang, L. Sheng, H. Gao, Y. Zhang, S. Yu, J. Chem. Phys. 107, 10391 (1997)

    ADS  Article  Google Scholar 

  44. 44.

    B. Darwent, Bond Dissociation Energies in Simple Molecules (National Bureau of Standards, Washington, 1970)

  45. 45.

    J.A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1972)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pablo de Vera.

Additional information

Contribution to the Topical Issue “Dynamics of Systems on the Nanoscale (2018)”, edited by Ilko Bald, Ilia A. Solov’yov, Nigel J. Mason and Andrey V. Solov’yov.

Supplementary material in the form of one mp4 file available from the Journal web page at https://doi.org/10.1140/epjd/e2019-100232-9

Electronic supplementary material

Supplementary Material

MP4 file

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Vera, P., Verkhovtsev, A., Sushko, G. et al. Reactive molecular dynamics simulations of organometallic compound W(CO)6 fragmentation,. Eur. Phys. J. D 73, 215 (2019). https://doi.org/10.1140/epjd/e2019-100232-9

Download citation