Skip to main content
Log in

Regularities in the transformation of the oscillating decay rate in moving unstable quantum systems

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Decay laws of unstable quantum systems, which move with constant linear momentum in the laboratory reference frame and exhibit oscillating decay rate, are analyzed over intermediate times. The transformations of the decay laws and intermediate times at rest, which are induced by the change of reference frame, are obtained from the basic principles of quantum theory and special relativity by approximating the modulus of the survival amplitude at rest via the superposition of purely exponential and exponentially damped oscillating modes. The mass distribution density is considered to be approximately symmetric with respect to the mass of resonance. Under determined conditions, the modal decay widths at rest, Γj, and the modal frequencies of oscillations at rest, Ωj, reduce regularly, Γj/γ and Ωj/γ, in the laboratory reference frame. Over a determined time window, the survival probability at rest, the intermediate times at rest and, if the oscillations are periodic, the period of the oscillations at rest transform regularly in the laboratory reference frame according to the same time scaling. The scaling reproduces the relativistic dilation of times if the mass of resonance is considered to be the effective mass at rest of the moving unstable quantum system with relativistic Lorentz factor γ.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Khalfin, Sov. Phys. JETP 6, 1053 (1958)

    ADS  Google Scholar 

  2. L. Fonda, G.C. Ghirardi, A. Rimini, Rep. Prog. Phys. 41, 587 (1978)

    ADS  Google Scholar 

  3. B. Bakamjian, Phys. Rev. 121, 1849 (1961)

    ADS  MathSciNet  Google Scholar 

  4. P. Exner, Phys. Rev. D 28, 2621 (1983)

    ADS  MathSciNet  Google Scholar 

  5. E.V. Stefanovich, Int. J. Theor. Phys. 35, 2539 (1996)

    Google Scholar 

  6. M.I. Shirokov, Int. J. Theor. Phys. 43, 1541 (2004)

    Google Scholar 

  7. M.I. Shirokov, Concepts Phys. 3, 193 (2006)

    Google Scholar 

  8. K. Urbanowski, Phys. Lett. B 737, 346 (2014)

    ADS  MathSciNet  Google Scholar 

  9. F. Giacosa, Acta Phys. Pol. B 47, 2135 (2016)

    ADS  MathSciNet  Google Scholar 

  10. F. Giacosa, Acta Phys. Pol. B 48, 1831 (2017)

    ADS  Google Scholar 

  11. K. Urbanowski, Acta Phys. Pol. B 48, 1411 (2017)

    ADS  MathSciNet  Google Scholar 

  12. F. Giacosa, Adv. High Energy Phys. 2018, 4672051 (2018)

    Google Scholar 

  13. C. Møller, The Theory of Relativity (Clarendon Press, Oxford, 1972)

  14. E.V. Stefanovich, https://arXiv:physics/0603043 (2006)

  15. K. Urbanowski, Acta Phys. Pol. B 48, 1847 (2017)

    ADS  MathSciNet  Google Scholar 

  16. E.V. Stefanovich, Adv. High Energy Phys. 2018, 4657079 (2018)

    MathSciNet  Google Scholar 

  17. B. Rossi, D.B. Hall, Phys. Rev. A 59, 223 (1941)

    ADS  Google Scholar 

  18. D.H. Frish, J.H. Smith, Am. J. Phys. 31, 342 (1963)

    ADS  Google Scholar 

  19. D.S. Ayres, A.M. Cormack, A.J. Greenberg, R.W. Kenney, D.O. Cladwell, V.B. Elings, W.P. Hesse, R.J. Morrison, Phys. Rev. D 3, 1051 (1971)

    ADS  Google Scholar 

  20. C.E. Roos, J. Marraffino, S. Reucroft, J. Waters, M.S. Webster, E.G.H. Williams, A. Manz, R. Settles, G. Wolf, Nature 286, 244 (1980)

    ADS  Google Scholar 

  21. J. Bailey, K. Borer, F. Combley, H. Drumm, F. Krienen, F. Lange, E. Picasso, W. von Ruden, F.J.M. Farley, J.H. Field, W. Flegel, P.M. Hattersley, Nature 268, 301 (1977)

    ADS  Google Scholar 

  22. F.J.M. Farley, Z. Phys, C 56, S88 (1992)

    Google Scholar 

  23. M.I. Shirokov, Phys. Part. Nucl. Lett. 6, 14 (2009)

    Google Scholar 

  24. F. Giacosa, G. Pagliara, Mod. Phys. Lett. A 26, 2247 (2011)

    ADS  Google Scholar 

  25. Y.A. Litvinov, F. Bosch, N. Winckler, D. Boutin, H.G. Essel, T. Faestermann, H. Geissel, S. Hess, P. Kienle, R. Knöbel, C. Kozhuharov, Phys. Lett. B 664, 162 (2008)

    ADS  Google Scholar 

  26. P.A. Vetter, R.M. Clark, J. Dvorak, S.J. Freedman, K.E. Gregorich, H.B. Jeppesen, D. Mittelberger, M. Wiedeking, Phys. Lett. B 670, 196 (2008)

    ADS  Google Scholar 

  27. P. Kienle, F. Bosch, P. Bühler, T. Faestermann, Y.A. Litvinov, N. Winckler, M.S. Sanjari, D.B. Shubina, D. Atanasov, H. Geissel, V. Ivanova, Phys. Lett. B 726, 638 (2013)

    ADS  Google Scholar 

  28. F.C. Ozturk, B. Akkus, D. Atanasov, H. Beyer, F. Bosch, D. Boutin, C. Brandau, P. Bühler, R.B. Cakirli, R.J. Chen, W.D. Chen, X.C. Chen, I. Dillmann, C. Dimopoulou, W. Enders, H.G. Essel, T. Faestermann, O. Forstner, B.S. Gao, H. Geissel, R. Gernhäuser, R.E. Grisenti, A. Gumberidze, S. Hagmann, T. Heftrich, M. Heil, M.O. Herdrich, P.-M. Hillenbrand, T. Izumikawa, P. Kienle, C. Klaushofer, C. Kleffner, C. Kozhuharov, R.K. Knöbel, O. Kovalenko, S. Kreim, T. Kühl, C. Lederer-Woods, M. Lestinsky, S.A. Litvinov, YuA Litvinov, Z. Liu, X.W. Ma, L. Maier, B. Mei, H. Miura, I. Mukha, A. Najafi, D. Nagae, T. Nishimura, C. Nociforo, F. Nolden, T. Ohtsubo, Y. Oktem, S. Omika, A. Ozawa, N. Petridis, J. Piotrowski, R. Reifarth, J. Rossbach, R. Sánchez, M.S. Sanjari, C. Scheidenberger, R.S. Sidhu, H. Simon, U. Spillmann, M. Steck, Th Stöhlker, B.H. Sun, L.A. Susam, F. Suzaki, T. Suzuki, SYu Torilov, C. Trageser, M. Trassinelli, S. Trotsenko, X.L. Tu, P.M. Walker, M. Wang, G. Weber, H. Weick, N. Winckler, D.F.A. Winters, P.J. Woods, T. Yamaguchi, X.D. Xu, X.L. Yan, J.C. Yang, Y.J. Yuan, Y.H. Zhang, X.H. Zhou, FRS-ESR Collaboration, ILIMA Collaboration, SPARC Collaboration, TBWD Collaboration, Phys. Lett. B 797, 134800 (2019)

    Google Scholar 

  29. F. Giacosa, G. Pagliara, Quantum Matter 2, 54 (2013)

    Google Scholar 

  30. F. Giacosa, G. Pagliara, PoS BORMIO 2012, 028 (2012)

    Google Scholar 

  31. P. Facchi, S. Pascazio, in Fundamental Aspects of Quantum Physics, Quantum Probability and White Noise Analysis, edited by L. Accardi, S. Tasaki, (World Scientific, 2003), Vol. XVII, p. 222

  32. K. Urbanowski, Eur. Phys. J. D 54, 25 (2009)

    ADS  Google Scholar 

  33. S.R. Wilkinson, C.F. Bharucha, M.C. Fischer, K.W. Madison, P.R. Morrow, Q. Niu, B. Sundaram, M.G. Raizen, Nature 387, 575 (1997)

    ADS  Google Scholar 

  34. D.E. Alburger, G. Harbottle, E.F. Northon, Earth Planet. Sci. Lett. 78, 168 (1986)

    ADS  Google Scholar 

  35. F. Giraldi, J. Phys. A 52, 415301 (2019)

    MathSciNet  Google Scholar 

  36. G.R. de Prony, J. Ec. Polytechn. 1, 24 (1795)

    Google Scholar 

  37. J.F. Hauer, C.J. Demeure, L.L. Scharf, IEEE Trans. Power Syst. 5, 80 (1990)

    ADS  Google Scholar 

  38. M.R. Smith, S. Cohn-Sfetcu, H.A. Buckmaster, Technometrics 18 (1976) 467.

    MathSciNet  Google Scholar 

  39. G. Plonka, M. Tasche, GAMM-Mitt. 37, 239 (2014)

    MathSciNet  Google Scholar 

  40. J.C. Mauro, Y.Z. Mauro, Physica A 506, 75 (2018)

    ADS  MathSciNet  Google Scholar 

  41. K. Urbanowski, Eur. Phys. J. D 54, 25 (2009)

    ADS  Google Scholar 

  42. K. Urbanowski, Centr, Eur. J. Phys. 7, 696 (2009)

    Google Scholar 

  43. F. Giraldi, Adv. High Energy Phys. 2018, 7308935 (2018)

    MathSciNet  Google Scholar 

  44. P.L. Knight, Phys. Lett. A 61, 25 (1977)

    ADS  Google Scholar 

  45. N.G. Kelkar, M. Nowakowski, J. Phys. A 43, 385308 (2010)

    ADS  MathSciNet  Google Scholar 

  46. N.G. Kelkar, M. Nowakowski, K.P. Khemchandani, Phys. Rev. C 70, 024601 (2004)

    ADS  Google Scholar 

  47. D.F. Ramírez Jiménez, N.G. Kelkar, J. Phys. A 52, 055201 (2019)

    ADS  Google Scholar 

  48. F. Giraldi, Eur. Phys. J. D 69, 5 (2015)

    ADS  Google Scholar 

  49. F. Giraldi, Eur. Phys. J. D 70, 229 (2016)

    ADS  Google Scholar 

  50. K. Urbanowski, Phys. Rev. A 50, 2847 (1994)

    ADS  Google Scholar 

  51. M.I. Shirokov, V.A. Naumov, Concepts Phys. 4, 127 (2007)

    Google Scholar 

  52. F. Giraldi, J. Phys. A 51, 435303 (2018)

    ADS  MathSciNet  Google Scholar 

  53. K.M. Sluis, E.A. Gislason, Phys. Rev. A 43, 4581 (1991)

    ADS  Google Scholar 

  54. D.S. Onley, A. Kumar, Am. J. Phys. 60, 432 (1992)

    ADS  Google Scholar 

  55. H. Jakobovits, Y. Rothschild, J. Levitan, Am. J. Phys. 63, 439 (1995)

    ADS  Google Scholar 

  56. F.W.J. Olver, D.W. Loizer, R.F. Boisvert, C.W. Clark, The NIST Handbook of Mathematical Functions (New York Cambridge University Press, 2010)

  57. I.S. Gradshteyn, I.M. Ryzhik, Table of Integral, Series and Products. 7th edn (Academic Press, Orlando, Florida, 2007)

  58. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, New York, 1964)

  59. G.N. Fleming, https://arXiv:1104.1815

  60. W.M. Gibson, B.R. Polard, Symmetry Principles in Elementary Particle Physics (Cambridge, 1976).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Giraldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giraldi, F. Regularities in the transformation of the oscillating decay rate in moving unstable quantum systems. Eur. Phys. J. D 73, 239 (2019). https://doi.org/10.1140/epjd/e2019-100219-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100219-0

Keywords

Navigation