Feasibility of the ion-trap simulation of a class of non-equilibrium phase transitions

Abstract

Our work analyzes the potential of ion traps for the experimental simulation of non-equilibrium phase transitions observed in certain spin-chain models which can be mapped to free-fermion systems. In order to make the dynamics more accessible to an experimenter, we first consider relatively small systems, with few particles. We analyze phase transitions in the non-equilibrium asymptotic regimes of an XY spin chain with a transverse magnetic field and coupled to Markovian baths at the end sites. We study a static open system and a case when the spin chain is periodically kicked. Notably, in the latter case for some anisotropy parameters the dependence on the system size converges rapidly to the many-particle limit, thus facilitating the experimental observation of the dynamics. We also define local observables that indicate the presence of the quantum phase transitions of interest, and we study the effects of the long-range character of the typical interactions obtained in ion traps.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Žnidarič, J. Stat. Mech. 2010, L05002 (2010)

    Article  Google Scholar 

  2. 2.

    A. Tomadin, S. Diehl, P. Zoller, Phys. Rev. A 83, 013611 (2011)

    ADS  Article  Google Scholar 

  3. 3.

    L. Banchi, P. Giorda, P. Zanardi, Phys. Rev. E 89, 022102 (2014)

    ADS  Article  Google Scholar 

  4. 4.

    M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev Lett. 110, 135704 (2013)

    ADS  Article  Google Scholar 

  5. 5.

    R. Vosk, E. Altman, Phys. Rev. Lett. 112, 217204 (2014)

    ADS  Article  Google Scholar 

  6. 6.

    G. Mazza, M. Fabrizio, Phys. Rev. B 86, 184303 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999)

  8. 8.

    S. Diehl, A. Tomadin, A. Micheli, R. Fazio, P. Zoller, Phys. Rev. Lett. 105, 015702 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010)

    ADS  Article  Google Scholar 

  10. 10.

    P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C. Hempel, B.P. Lanyon, M. Heyl, R. Blatt, C.F. Roos, Phys. Rev. Lett. 119, 080501 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    S. Genway, W. Li, C. Ates, B.P. Lanyon, I. Lesanovsky, Phys. Rev. Lett. 112, 023603 (2014)

    ADS  Article  Google Scholar 

  12. 12.

    G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124, 194507 (2006)

    ADS  Article  Google Scholar 

  13. 13.

    S. Morrison, A.S. Parkins, Phys. Rev. Lett. 100, 040403 (2008)

    ADS  Article  Google Scholar 

  14. 14.

    T. Prosen, I. Pizôrn, Phys. Rev. Lett. 101, 105701 (2008)

    ADS  Article  Google Scholar 

  15. 15.

    T. Prosen, J. Stat. Mech. 2010, P07020 (2010)

    Article  Google Scholar 

  16. 16.

    T. Prosen, E. Ilievski, Phys. Rev. Lett. 107, 060403 (2011)

    ADS  Article  Google Scholar 

  17. 17.

    D. Porras, J. Cirac, Phys. Rev. Lett. 92, 207901 (2004)

    ADS  Article  Google Scholar 

  18. 18.

    R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012)

    Article  Google Scholar 

  19. 19.

    J. Zhang, G. Pagano, P.W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A.V. Gorshkov, Z.-X. Gong, C. Monroe, Nature 551, 601 (2017)

    ADS  Article  Google Scholar 

  20. 20.

    J.W. Britton, B.C. Sawyer, A.C. Keith, C.-C.J. Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Nature 484, 489 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 16, 407 (1961)

    ADS  Article  Google Scholar 

  22. 22.

    P. Pfeuty, Ann. Phys. 57, 79 (1970)

    ADS  Article  Google Scholar 

  23. 23.

    T. Prosen, New J. Phys. 10, 043026 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    K. Kim, S. Korenblit, R. Islam, E.E. Edwards, M.-S. Chang, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.C. Joseph Wang, J.K. Freericks, C. Monroe, New J. Phys. 13, 105003 (2011)

    ADS  Article  Google Scholar 

  25. 25.

    C. Cormick, A. Bermudez, S. Huelga, M. Plenio, New J. Phys. 15, 073027 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    R. Islam, C. Senko, W.C. Campbell, S. Korenblit, J. Smith, A. Lee, E.E. Edwards, C.-C.J. Wang, J.K. Freericks, C. Monroe, Science 340, 583 (2013)

    ADS  Article  Google Scholar 

  27. 27.

    P. Jurcevic, B.P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, C.F. Roos, Nature 511, 13461 (2014)

    Article  Google Scholar 

  28. 28.

    C. Weedbrook, S. Pirandola, R. García-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Rev. Mod. Phys. 84, 621 (2012)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cecilia Cormick.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramos, A., Cormick, C. Feasibility of the ion-trap simulation of a class of non-equilibrium phase transitions. Eur. Phys. J. D 73, 237 (2019). https://doi.org/10.1140/epjd/e2019-100180-4

Download citation

Keywords

  • Quantum Information