Skip to main content
Log in

Optical current, momentum and angular momentum in anisotropic materials exposed to detailed balance

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This work investigates the theory behind a thought experiment that intends to measure momentum and angular momentum of matter exposed to “isotropic radiative noise’’. Radiative momentum has been a controversial subject for decades. The radiative momentum of isotropic noise is intuitively expected to be zero. We formulate the general features of the isotropic noise such as equipartition of energy and the vanishing of integrated Poynting vector. We demonstrate that in bi-anisotropic materials, a finite radiative momentum persists that performs work on the matter when its parameters change slowly. We find that Faraday rotation in the scattering of the radiative noise induces an angular momentum along the applied external magnetic field. Also, the Poynting vector is found to circulate around the matter, raising the question whether it really describes the energy flow. These effects are small and hard to measure in any real experiment. Yet, they are surprising predictions of the classical, macroscopic Maxwell equations, and make contact with the outcome of recent QED calculations done for the quantum vacuum.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Brevik, Phys. Rep. 52, 133 (1979).

    Article  ADS  Google Scholar 

  2. F.N.H. Robinson, Phys. Rep. 16, 313 (1975).

    Article  ADS  Google Scholar 

  3. R. Peierls, in More Surprises in Theoretical Physics, (Princeton University Press, 1991), pp. 30–42.

  4. D.F. Nelson, Phys. Rev. A 44, 3985 (1991).

    Article  ADS  Google Scholar 

  5. S.M. Barnett, R. Loudon, Philos. Trans. R. Soc. A 368, 927 (2010).

    Article  ADS  Google Scholar 

  6. K. Bliokh, A. Bekshaev, F. Nori, Phys. Rev. Lett. 119, 073901 (2017).

    Article  ADS  Google Scholar 

  7. J.D. Jackson, Classical Electrodynamics (John Wiley, 1975).

  8. S.M. Barnett, Phys. Rev. Lett. 104, 070401 (2010).

    Article  ADS  Google Scholar 

  9. K. Bliokh, A. Bekshaev, F. Nori, New J. Phys. 19, 123014 (2017).

    Article  ADS  Google Scholar 

  10. K. Bliokh, F. Nori, Phys. Rep. 592, 1 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Bliokh, A. Bekshaev, F. Nori, New J. Phys. 16, 093037 (2014).

    Article  ADS  Google Scholar 

  12. Ch Kriegler, M.S. Rill, S. Linden, M. Wegener, IEEE J. Sel. Top. Quantum Electron 16, 367 (2010).

    Article  ADS  Google Scholar 

  13. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Introduction to Quantum Electrodynamics (Wiley, 1997).

  14. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, 1980).

  15. R. Weaver, O.I. Lobkis, Phys. Rev. Lett. 87, 134301 (2001).

    Article  ADS  Google Scholar 

  16. M. Campillo, A. Paul, Science 299, 547 (2003).

    Article  ADS  Google Scholar 

  17. K. Wapenaar, Phys. Rev. Lett. 93, 254301 (2004).

    Article  ADS  Google Scholar 

  18. B.A. van Tiggelen, Phys. Rev. Lett. 91, 243904 (2003).

    Article  ADS  Google Scholar 

  19. L.D. LandauE.M. Lifshitz, L.P. Piteavskii, Electrodynamics of Continuous Media (Pergamon, 1984), Vol. 8

  20. R. Maddox, D.L. Mills, Phys. Rev. B 11, 2229 (1975).

    Article  ADS  Google Scholar 

  21. M.F. Bishop, A.A. Maradudin, Phys. Rev. B 14, 3384 (1976).

    Article  ADS  Google Scholar 

  22. D.P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynaynmics (Dover, 1984).

  23. M. Donaire, B.A. van Tiggelen, G.L.J.A. Rikken, Phys. Rev. Lett. 111, 143602 (2013).

    Article  ADS  Google Scholar 

  24. G.L.J.A. Rikken, B.A. van Tiggelen, V. Krstic, G. Wagniere, Chem. Phys. Lett. 403, 298 (2005).

    Article  ADS  Google Scholar 

  25. S. Wang, F. Garet, E. Lheurette, M. Astic, J.L. Coutaz, D. Lippens, APL Mater. 1, 032116 (2013).

    Article  ADS  Google Scholar 

  26. M. Decker, R. Zhao, C.M. Soukoulis, S. Linden, M. Wegener, Opt. Lett. 35, 1593 (2010).

    Article  ADS  Google Scholar 

  27. A. Feigel, Phys. Rev. Lett. 92, 020404 (2004).

    Article  ADS  Google Scholar 

  28. G.L.J.A. Rikken, B.A. van Tiggelen, Phys. Rev. Lett. 107, 170401 (2011).

    Article  ADS  Google Scholar 

  29. F.A. Pinheiro, B.A. van Tiggelen, J. Opt. Soc. Am. A 20, 99 (2003).

    Article  ADS  Google Scholar 

  30. V. Ya Frenkel, Sov. Phys. Usp. 22, 580 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart A. van Tiggelen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Tiggelen, B.A. Optical current, momentum and angular momentum in anisotropic materials exposed to detailed balance. Eur. Phys. J. D 73, 196 (2019). https://doi.org/10.1140/epjd/e2019-100178-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100178-4

Keywords

Navigation