Skip to main content
Log in

Electron capture, excitation and ionization in H+–Be+ collisions

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

State-selective single electron capture, excitation and ionization processes in proton collisions with Be+(1s22s) and Be+(1s22p) ions are studied by using the quantum-mechanical molecular orbital (QMOCC) and the two-center atomic orbital close-coupling (TC-AOCC) methods in the combined energy range 0.01–300 keV/u. In the QMOCC calculations six 2Σ+ and three 2Π states are included in the expansion basis. The TC-AOCC expansion basis includes 35 discrete states centered on the proton and 182 states on Be2+ out of which 88 are continuum pseudostates. The atomic states on Be2+ are generated by a one-electron model potential for the electron interaction with Be2+ ion core that reproduces the exact energies with accuracy better than 0.5%. Total and state-selective electron capture and excitation cross sections to final states with n ≤ 4 are presented. The sum of the cross sections for the transitions to continuum pseudostates (ionization cross section) is also reported for both initial target states. The physical mechanisms involved in the dynamics of considered processes are discussed in detail at both low and high energies. The reported cross sections should be useful in the kinetic modeling and diagnostics of edge plasmas in present magnetic fusion experiments, as well as in the current ITER design, in which beryllium is used as first wall material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bessendorf-Weberpals, J. Hackman, J. Ulenbusch, J. Nucl. Mater. 145, 849 (1987)

    Article  ADS  Google Scholar 

  2. G. Duxbury, M.F. Stamp, H.P. Summers, Plasma Phys. Controlled Fusion 40, 361 (1998)

    Article  ADS  Google Scholar 

  3. J. Wesson, Report JET-R(99)13, 1999

  4. K. Ikeda, in Progress in the ITER Physics Basis, Nuclear Fusion (2019), Vol. 47, Issue 6

  5. G. Federici, Phys. Scr. T124, 1 (2007)

    Article  ADS  Google Scholar 

  6. S. Brezinsek, JET-EFDA contributors, J. Nucl. Mater. 463, 11 (2015)

    Article  ADS  Google Scholar 

  7. I. Bykov, H. Bergsaker, G. Possnert, K. Heinola, J. Miettunen, M. Groth, P. Petersson, A. Widdowson, J. Likonen, J. Nucl. Mater. 463, 773 (2015)

    Article  ADS  Google Scholar 

  8. S. Brezinsek, A. Widdowson, M. Mayer, V. Philipps, P. Baron-Wiechec, J.W. Coenen, K. Heinola, A. Huber, J. Likonen, P. Petersson, M. Rubel, Nucl. Fusion 55, 063021 (2015)

    Article  ADS  Google Scholar 

  9. N. Klimov, V. Podkovirov, A. Zhitlukhin, D. Kovalenko, J. Linke, G. Pintsuk, I. Landman, S. Pestchanyi, B. Bazylev, G. Janeschitz, A. Loarte, J. Nucl. Mater. 415, S59 (2011)

    Article  Google Scholar 

  10. F. Genko, A. Hassanein, Fusion Eng. Des. 89, 335 (2014)

    Article  Google Scholar 

  11. A.A. Pshenov, A.A. Eksaeva, S.I. Krasheninnikov, E.D. Marenkov, Phys. Procedia 71, 14 (2015)

    Article  ADS  Google Scholar 

  12. D.R. Bates, H.C. Johnston, I. Stewart, Proc. Phys. Soc. 84, 517 (1964)

    Article  ADS  Google Scholar 

  13. D.C.F. Crothers, N.R. Todd, J. Phys. B: At., Mol. Phys. 11, L663 (1978)

    Article  ADS  Google Scholar 

  14. B.H. Bransden, Nucl. Instrum. Methods Phys. Res. B 24/25, 377 (1978)

    Article  ADS  Google Scholar 

  15. B. Zygelman, D.L. Cooper, M.J. Ford, A. Dalgarno, J. Gerratt, M. Raimondi, Phys. Rev. A 46, 3846 (1992)

    Article  ADS  Google Scholar 

  16. M. Kimura, N.F. Lane, Adv. At. Mol. Opt. Phys. 26, 79 (1990)

    Article  ADS  Google Scholar 

  17. B.R. Johnson, J. Comput. Phys. 13, 445 (1973)

    Article  ADS  Google Scholar 

  18. M.C. Bacchus-Montabonel, P. Ceyzeriat, Phys. Rev. A 58, 1162 (1998)

    Article  ADS  Google Scholar 

  19. L.F. Errea, L. Méndez, A. Riera, J. Phys. B: At., Mol. Phys. 15, 101 (1982)

    Article  ADS  Google Scholar 

  20. T.G. Heil, S.E. Butler, A. Dalgarno, Phys. Rev. A 23, 1100 (1981)

    Article  ADS  Google Scholar 

  21. R.J. Buenker, R.A. Phillips, J. Mol. Struct.: THEOCHEM 123, 291 (1985)

    Article  Google Scholar 

  22. S. Krebs, R.J. Buenker, J. Chem. Phys. 103, 5613 (1995)

    Article  ADS  Google Scholar 

  23. T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  24. L.F. Pacios, P.A. Christiansen, J. Chem. Phys. 82, 2664 (1985)

    Article  ADS  Google Scholar 

  25. Yu Ralchenko, A.E. Kramida, J. Reader, NIST ASD Team, Atomic Spectra Database (version 3.1.5) (2008), http://physics.nist.gov/asd3

  26. W. Fritsch, C.D. Lin, Phys. Rep. 202, 1 (1991)

    Article  ADS  Google Scholar 

  27. B.H. Bransden, M.R.C. McDowell, Charge Exchange and Theory of Ion-Atom Collisions (Clarendon, Oxford, 1992)

  28. C.H. Liu, J.G. Wang, R.K. Janev, Phys. Rev. A 85, 042719 (2012)

    Article  ADS  Google Scholar 

  29. D.R. Schultz, C.O. Reinhold, P.S. Krstic, Phys. Rev. Lett. 78, 2720 (1997)

    Article  ADS  Google Scholar 

  30. M.I. Chibisov, R.K. Janev, X. Urbain, F. Brouillard, J. Phys. B: At., Mol. Opt. Phys. 34, 2631 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Liu, C., Wang, J. et al. Electron capture, excitation and ionization in H+–Be+ collisions. Eur. Phys. J. D 73, 200 (2019). https://doi.org/10.1140/epjd/e2019-100145-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100145-1

Keywords

Navigation