Skip to main content

Advertisement

Log in

Energy loss of H+ and H2+ beams in carbon nanotubes: a joint experimental and simulation study

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Carbon nanotube properties can be modified by ion irradiation; therefore it is important to know the manner in which ions deposit energy (how much and where) in the nanotubes. In this work, we have studied, experimentally and with a simulation code, the irradiation of multi-walled carbon nanotubes (MWCNT), supported on a holey amorphous carbon (a-C) substrate, with low energy (2–10 keV/u) H+ and H2+ molecular beams, impinging perpendicularly to the MWCNT axis. The energy distribution of protons traversing the nanotubes (either from the H+ beam or dissociated from the H2+ beam) was measured by the transmission technique in the forward direction. Two well-differentiated peaks appear in the experimental energy-loss distribution of the fragments dissociated from the molecular H2+ beam, in correspondence to the ones detected with the proton beam. One is the low-energy loss peak (LELP), which has a symmetric width; the other is the high-energy loss peak (HELP), which shows an asymmetric broadening towards larger energy loss than the corresponding proton energy distribution. A semi-classical simulation, accounting for the main interaction processes (both elastic and inelastic), of the proton trajectories through the nanotube and the supporting substrate has been done, in order to elucidate the origin of these structures in the energy spectra. Regarding the H+ energy spectrum, the LELP corresponds to projectiles that travel in quasi-channelling motion through the most outer walls of the nanotubes and then pass through the substrate holes, whereas the HELP results mostly from projectiles traversing only the a-C substrate, with the asymmetry broadening being due to a minor contribution of those protons that cross the a-C substrate after exiting the nanotube. The broadening of the peaks corresponding to dissociated fragments, with respect to that of the isolated protons, is the result of vicinage effects between the fragments, when travelling in quasi-channelling conditions through the outer layers of the nanotube, and Coulomb explosion just after exiting the target. The excellent agreement between the measured and the simulated energy spectra of the H+ beam validates our simulation code in order to predict the energy deposited by ion beams in carbon nanotubes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Shubeita, P.L. Grande, J.F. Dias, R. Garcia-Molina, C.D. Denton, I. Abril, Phys. Rev. B 83, 245423 (2011)

    Article  ADS  Google Scholar 

  2. N.E. Koval, A.G. Borisov, L.F.S. Rosa, E.M. Stori, J.F. Dias, P.L. Grande, D. Sánchez-Portal, R. Dez Muiño, Phys. Rev. A 95, 062707 (2017)

    Article  ADS  Google Scholar 

  3. J.E. Valdés, C. Parra, J. Daz-Valdés, C.D. Denton, C. Agurto, F. Ortega, N.R. Arista, P. Vargas, Phys. Rev. A 68, 064901 (2003)

    Article  ADS  Google Scholar 

  4. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002)

    Article  ADS  Google Scholar 

  5. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes, Synthesis, Structure, Properties and Applications (Springer, Berlin, 2001)

  6. A.V. Krasheninnikov, K. Nordlund, J. Appl. Phys. 107, 071301 (2010)

    Article  ADS  Google Scholar 

  7. A. Olejniczak, V.A. Skuratov, Nucl. Instrum. Methods Phys. Res. B 326, 33 (2014)

    Article  ADS  Google Scholar 

  8. Y. Zhang, L. Chen, Z. Xu, Y. Li, M. Shan, L. Liu, Q. Guo, G. Chen, Z. Wang, C. Wang, Int. J. Mat. Prod. Technol. 45, 1 (2012)

    Article  Google Scholar 

  9. Z.L. Mišković, Radiat. Eff. Defects Solids 162, 185 (2007)

    Article  ADS  Google Scholar 

  10. J.E. Valdés, C. Celedón, R. Segura, I. Abril, R. Garcia-Molina, C.D. Denton, N.R. Arista, P. Vargas, Carbon 52, 137 (2013)

    Article  Google Scholar 

  11. C.E. Celedón, A. Cortés, E.A. Sánchez, M.S. Moreno, J.D. Uribe, N.R. Arista, J.E. Valdés, Eur. Phys. J. D 71, 64 (2017)

    Article  ADS  Google Scholar 

  12. R.A. Segura, A. Tello, G. Cárdenas, P. Häberle, Phys. Status Solidi A 204, 513 (2007)

    Article  ADS  Google Scholar 

  13. I. Kyriakou, C. Celedón, R. Segura, D. Emfietzoglou, P. Vargas, J.E. Valdés, I. Abril, C.D. Denton, K. Kostarelos, R. Garcia-Molina, Nucl. Instrum. Methods Phys. Res. B 268, 1781 (2010)

    Article  ADS  Google Scholar 

  14. R.A. Segura, S. Hevia, P. Häberle, J. Nanosci. Nanotechnol. 11, 10036 (2011)

    Article  Google Scholar 

  15. R. Garcia-Molina, M.D. Barriga-Carrasco, Phys. Rev. A 68, 054901 (2003)

    Article  ADS  Google Scholar 

  16. P.M. Echenique, R.M. Nieminen, R.H. Ritchie, Solid State Commun. 37, 779 (1981)

    Article  ADS  Google Scholar 

  17. N.R. Arista, Nucl. Instrum. Methods Phys. Res. B 164–165, 108 (2000)

    Article  ADS  Google Scholar 

  18. J.C. Eckardt, G.H. Lantschner, N.R. Arista, R.A. Baragiola, J. Phys. C 11, L851 (1978)

    Article  ADS  Google Scholar 

  19. R. Levi-Setti, K. Lam, T.R. Fox, Nucl. Instrum. Methods Phys. Res. 194, 281 (1982)

    Article  ADS  Google Scholar 

  20. E.A. Figueroa, E.D. Cantero, J.C. Eckardt, G.H. Lantschner, M.L. Martiarena, N.R. Arista, Phys. Rev. A 78, 032901 (2008)

    Article  ADS  Google Scholar 

  21. E.A. Gridneva, N.N. Koborov, V.A. Kurnaev, N.N. Trifonov, JETP Lett. 1, 15 (2003)

    Google Scholar 

  22. W.W. Ruland, A.K. Schaperb, H. Houa, A. Greinera, Carbon 41, 423 (2003)

    Article  Google Scholar 

  23. M.O. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989)

    Book  Google Scholar 

  24. W. Eckstein, Computer Simulation of Ion-solid Interactions (Springer-Verlag, Berlin, 1991)

    Book  Google Scholar 

  25. C.E. Celedón, E.D. Cantero, G.H. Lantschner, N.R. Arista, Nucl. Instrum. Methods Phys. Res. B 315, 21 (2013)

    Article  ADS  Google Scholar 

  26. O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984)

    Article  ADS  Google Scholar 

  27. O.K. Andersen, Z. Pawlowska, O. Jepsen, Phys. Rev. B 34, 5253 (1986)

    Article  ADS  Google Scholar 

  28. D. Isaacson, Compilation of rs Values, Internal Report, Radiation and Solid State Laboratory (New York University, New York, 1975)

  29. G. Schiwietz, P.L. Grande, Nucl. Instrum. Methods Phys. Res. B 175–177, 125 (2001)

    Article  ADS  Google Scholar 

  30. J.A. Phillips, Phys. Rev. 97, 404(1955)

    Article  ADS  Google Scholar 

  31. R. Garcia-Molina, I. Abril, C.D. Denton, S. Heredia-Avalos, Nucl. Instrum. Methods Phys. Res. B 249, 6 (2006)

    Article  ADS  Google Scholar 

  32. P. Sigmund, , Particle Penetration and Radiation Effects, Vol. 2: Penetration of Atomic and Molecular Ions (Springer, 2014)

  33. M.D. Barriga-Carrasco, R. Garcia-Molina, Phys. Rev. A 68, 062902 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Garcia-Molina.

Additional information

Contribution to the Topical Issue “Dynamics of Systems on the Nanoscale (2018)”, edited by Ilko Bald, Ilia A. Solov’yov, Nigel J. Mason and Andrey V. Solov’yov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdés, J.E., Celedón, C., Mery, M. et al. Energy loss of H+ and H2+ beams in carbon nanotubes: a joint experimental and simulation study. Eur. Phys. J. D 73, 201 (2019). https://doi.org/10.1140/epjd/e2019-100106-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100106-2

Keywords

Navigation