Laser Solitons in 1D, 2D and 3D

  • Nikolay N. RosanovEmail author
  • Sergey V. FedorovEmail author
  • Nikolay A. Veretenov


We review research of spatial and spatiotemporal dissipative solitons and their complexes in laser with saturable absorption, beginning from geometrically one-dimensional (1D) and turning to two-dimensional (2D) and then to three-dimensional (3D) ones. We demonstrate evolution of features, including topological ones, with their enrichment, of the laser localized structures with increase of the scheme’s geometrical dimensionality.

Graphical abstract




  1. 1.
    N.N. Rosanov, S.V. Fedorov, Opt. Spectrosc. 782, 782 (1992)ADSGoogle Scholar
  2. 2.
    N.N. Rosanov, Dissipative Optical Solitons (Fizmatlit (in Russian), Moscow, 2011)Google Scholar
  3. 3.
    V.B. Taranenko, I. Ganne, R.J. Kuszelewicz, C.O. Weiss, Phys. Rev. A 61, 063818 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, Th Knödl, M. Miller, R. Jäger, Nature 419, 699 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    X. Hachair, F. Pedaci, E. Caboche, S. Barland, M. Giudici, J.R. Tredicce, F. Prati, G. Tissoni, R. Kheradmand, L.A. Lugiato, I. Protsenko, M. Brambilla, IEEE J. Sel. Top. Quantum Electron. 12, 339 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    X. Hachair, G. Tissoni, H. Thienpont, K. Panajotov, Phys. Rev. A 79, 011801 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Tanguy, T. Ackemann, W.J. Firth, R. Jäger, Phys. Rev. Lett. 100, 013907 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, S. Barbay, Eur. Phys. J. D 59, 91 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, S. Barbay, Appl. Phys. B 98, 327 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    M. Turconi, M. Guidici, S. Barland, Phil. Trans. R. Soc. A 372, 20140004 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    T. Ackemann, W.J. Firth, G.-L. Oppo, in Advances in Atomic, Molecular, and Optical Physics (Academic Press, New York, NY, 2009), Vol. 57, Chap. 6, p. 323Google Scholar
  12. 12.
    S. Barbay, R. Kuszelewicz, J.R. Tredicce, Adv. Opt. Technol. 2011, 628761 (2011)CrossRefGoogle Scholar
  13. 13.
    F. Pedaci, P. Genevet, S. Barland, M. Guidici, J.R. Tredicce, Appl. Phys. Lett. 89, 221111 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J.R. Tredicce, Appl. Phys. Lett. 92, 011101 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    F. Pedaci, G. Tissoni, S. Barland, M. Guidici, J.R. Tredicce, Appl. Phys. Lett. 93, 111104 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    N.N. Rosanov, G.V. Khodova, Opt. Spectrosc. 65, 661 (1988)Google Scholar
  17. 17.
    N.N. Rosanov, A.V. Fedorov, G.V. Khodova, Phys. Stat. Sol. B 150, 545 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    L. Lugiato, F. Prati, M. Brambilla, Nonlinear Optical Systems (Cambridge University Press, 2015)Google Scholar
  19. 19.
    P. Grelu, in Nonlinear optical cavity dynamics: from microresonators to fiber lasers, edited by Philippe Grelu (Wiley-VCH Verlag, Weinheim, Germany, 2016)Google Scholar
  20. 20.
    N.N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, 2002)Google Scholar
  21. 21.
    K. Staliunas, V.J. Sanchez-Morcillo, in Transverse patterns in nonlinear optical resonators, Springer tracts in modern physics (Springer Verlag, Berlin, 2003), Vol. 183Google Scholar
  22. 22.
    N. Akhmediev, A. Ankiewicz, eds., in Dissipative solitons, Lecture Notes Phys. (Springer, Berlin, 2005)Google Scholar
  23. 23.
    N. Akhmediev, A. Ankiewicz, eds., in Dissipative solitons: from optics to biology and medicine, Lecture Notes Phys. (Springer, Berlin, 2008), Vol. 751Google Scholar
  24. 24.
    R. Kuszelewicz, S. Barbay, G. Tissoni, G. Almuneau, eds., Eur. Phys. J. D 59, 1 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    V.I. Petviashvili, A.M. Sergeev, Sov. Phys. Dokl. 29, 493 (1984)ADSGoogle Scholar
  26. 26.
    A.F. Suchkov, Sov. Phys. JETP 22, 1026 (1966)ADSGoogle Scholar
  27. 27.
    N.N. Rosanov, G.V. Khodova, J. Opt. Soc. Am. B 7, 1057 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    YuM Golubev, TYu Golubeva, E.A. Vashukevich, S.V. Fedorov, N.N. Rosanov, Laser Phys. Lett. 16, 025201 (2019)ADSCrossRefGoogle Scholar
  29. 29.
    N.N. Rosanov, S.V. Fedorov, A.N. Shatsev, N.A. Veretenov, A.G. Vladimirov, IEEE J. Quantum Electron. 39, 197 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    L.C. Crasovan, B.A. Malomed, D. Mihalache, Phys. Rev. E 63, 016605 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    T. Mayteevarunyoo, B. Malomed, D. Skryabin, New J. Phys. 20, 113019 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    N.N. Rosanov, S.V. Fedorov, A.N. Shatsev, J. Exp. Theor. Phys. 98, 427 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    N.N. Rozanov, Opt. Spectrosc. 102, 734 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    D.W. McLaughlin, J.V. Moloney, A.C. Newell, Phys. Rev. Lett. 51, 75 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    L.A. Lugiato, R. Lefever, Phys. Rev. Lett. 58, 2209 (1987)ADSCrossRefGoogle Scholar
  36. 36.
    B.A. Malomed, A.A. Nepomnyashchy, Phys. Rev. A 42, 6009 (1990)ADSCrossRefGoogle Scholar
  37. 37.
    B.A. Malomed, Phys. Rev. A 44, 6954 (1991)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1971)Google Scholar
  39. 39.
    N.A. Veretenov, N.N. Rosanov, S.V. Fedorov, Opt. Quantum Electron. 40, 253 (2008)CrossRefGoogle Scholar
  40. 40.
    D. Mihalache, D. Mazilu, F. Lederer, Y.V. Kartashov, L.-C. Crasovan, L. Torner, B.A. Malomed, Phys. Rev. Lett. 97, 073904 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    N.A. Veretenov, S.V. Fedorov, N.N. Rosanov, Phys. Rev. Lett. 119, 263901 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    N.A. Veretenov, N.N. Rosanov, S.V. Fedorov, Phys. Rev. Lett. 117, 183901 (2016)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    S.V. Fedorov, N.A. Veretenov, N.N. Rosanov, Phys. Rev. Lett. 122, 023903 (2019)ADSCrossRefGoogle Scholar
  44. 44.
    N.A. Veretenov, S.V. Fedorov, N.N. Rosanov, Phil. Trans. R. Soc. A. 376, 20170367 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    S.V. Fedorov, N.N. Rosanov, N.A. Veretenov, JETP Lett. 107, 327 (2018)ADSCrossRefGoogle Scholar
  46. 46.
    A. Kawauchi, A Survey of Knot Theory (Birkhauser, Basel, Switzerland, 1996)Google Scholar
  47. 47.
    N. Akhmediev, A. Ankiewicz, Solitons of the complex Ginzburg–Landau equation, in Spatial solitons, edited by S. Trillo, W. Torruellas, Springer series in optical sciences (Springer, Berlin, 2001), Vol. 82, pp. 311–339Google Scholar
  48. 48.
    J. Jimenez, Y. Noblet, P.V. Paulau, D. Gomila, T. Ackemann, J. Opt. 15, 044011 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    J. Jimenez-Garcia, P.V. Paulau, G.L. Oppo, W.J. Firth, T. Ackemann, Vortex solitons and Azimuthons in vertical-cavity surface-emitting lasers with feedback, in Proceedings nonlinear photonics (Optical Society of America, 2014)Google Scholar
  50. 50.
    J. Jimenez-Garcia, P. Rodriguez, T. Guillet, T. Ackemann, Phys. Rev. Lett. 119, 113902 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    O. Lahav, O. Kfir, P. Sidorenko, M. Mutzafi, A. Fleischer, O. Cohen, Phys. Rev. X 7, 041051 (2017)Google Scholar
  52. 52.
    S.K. Turitsyn, N.N. Rosanov, I.A. Yarutkina, A.E. Bednyakova, S.V. Fedorov, O.V. Shtyrina, M.P. Fedoruk, Phys.-Uspekhi 59, 642 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Vavilov State Optical InstituteSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations