Skip to main content

Effect of Dzyaloshinskii–Moriya interaction on quantum entanglement in superconductors models of high Tc

Abstract

The modified spin-wave (MSW) theory and SU(N) Schwinger boson theory (SBW) are employed to study the quantum entanglement in one- (1D) and two-dimensional (2D) Heisenberg antiferromagnets with Dzyaloshinskii–Moriya (DM) interaction which are models to superconducting materials of high critical temperature Tc such as La2CuO4. For the 1D case, we consider integer spin and for 2D case, since the behavior is independent on the spin value, we consider the one-half-spin and square lattice. We get the entanglement entropy in function of the temperature T where we have not gotten large variation of the quantum entanglement with the changing of the anisotropy Δ and DM interaction constant D.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D.J. Scalapino, in Handbook of High-Temperature Superconductivity, edited by J.R. Schrieffer, J.S. Brooks (Springer, New York, 2007)

  2. 2.

    S. Sachdev, Science 336, 1510 (2012)

    Article  ADS  Google Scholar 

  3. 3.

    L.S. Lima, Solid State Commun. 258, 21 (2017)

    Article  ADS  Google Scholar 

  4. 4.

    L.S. Lima, Physica C 527, 33 (2016)

    Article  ADS  Google Scholar 

  5. 5.

    F. Iemini, T.O. Maciel, R.O. Vianna, Phys. Rev. B 92, 075423 (2015)

    Article  ADS  Google Scholar 

  6. 6.

    F. Iemini, L. da Silva Souza, T. Debarba, A.T. Cesario, T.O. Maciel, R.O. Vianna, Eur. Phys. J. D 71, 119 (2017)

    Article  ADS  Google Scholar 

  7. 7.

    K.H. Norwich, Physica A 462, 141 (2016)

    MathSciNet  Article  ADS  Google Scholar 

  8. 8.

    L.S. Lima, J. Mod. Phys. 06, 2231 (2015)

    Article  Google Scholar 

  9. 9.

    L.S. Lima, Physica A 483, 239 (2017)

    MathSciNet  Article  ADS  Google Scholar 

  10. 10.

    L.S. Lima, Physica A 492, 1853 (2018)

    MathSciNet  Article  ADS  Google Scholar 

  11. 11.

    N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  12. 12.

    F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)

    MathSciNet  Article  ADS  Google Scholar 

  13. 13.

    F.D.M. Haldane, Phys. Lett. A 93, 464 (1983)

    MathSciNet  Article  ADS  Google Scholar 

  14. 14.

    E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 16, 407 (1961)

    Article  ADS  Google Scholar 

  15. 15.

    E.H. Lieb, D. Mattis, J. Math. Phys. 3, 749 (1962)

    Article  ADS  Google Scholar 

  16. 16.

    L.S. Lima, A.S.T. Pires, J. Magn. Magn. Mater. 322, 2157 (2010)

    Article  ADS  Google Scholar 

  17. 17.

    A.R. Pereira, S.A. Leonel, P.Z. Coura, B.V. Costa, Phys. Rev. B 71, 014403 (2005)

    Article  ADS  Google Scholar 

  18. 18.

    T. Roscilde, S. Haas, Phys. Rev. Lett. 99, 047205 (2007)

    Article  ADS  Google Scholar 

  19. 19.

    L.S. Lima, A.S.T. Pires, B.V. Costa, Physica A 438, 579 (2015)

    MathSciNet  Article  ADS  Google Scholar 

  20. 20.

    L.S. Lima, A.S.T. Pires, B.V. Costa, J. Magn. Magn. Mater. 371, 89 (2014)

    Article  ADS  Google Scholar 

  21. 21.

    A.S.T. Pires, L.S. Lima, Phys. Rev. B 79, 064401 (2009)

    Article  ADS  Google Scholar 

  22. 22.

    A. Einstein, E. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  23. 23.

    A. Metavitsiadis, D. Sellmann, S. Eggert, Phys. Rev. B, 89, 241104 (2014)

    Article  ADS  Google Scholar 

  24. 24.

    A.L. de Paula, J.G.G. de Oliveira, J.G. Peixoto de Faria, D.S. Freitas, M.C. Nemes, Phys. Rev. A 89, 022303 (2014)

    Article  ADS  Google Scholar 

  25. 25.

    A.F. Kracklauer, J. Mod. Phys. 6, 1961 (2015)

    Article  Google Scholar 

  26. 26.

    G. Vidal, J.L. Latorre, E.I. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  27. 27.

    A.L. Malvezzi, G. Karpat, B. Cakmak, F.F. Fanchini, T. Debarba, R.O. Vianna, Phys. Rev. B 93, 184428 (2016)

    Article  ADS  Google Scholar 

  28. 28.

    T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002)

    MathSciNet  Article  ADS  Google Scholar 

  29. 29.

    A.R. Its, B.-Q. Jin, V.E. Korepin, J. Phys. A: Math. Gen. 38, 2975 (2005)

    Article  ADS  Google Scholar 

  30. 30.

    J.I. Latorre, E. Rico, G. Vidal, Quant. Inf. Comput. 4, 48 (2004)

    Google Scholar 

  31. 31.

    S. Sachdev, Quantum Phase Transitions, 2nd edn. (Cambridge, UK, 2011)

  32. 32.

    D. Bruss, G. Leuchs, Lectures on Quantum Information (WLEY-VCH Verlag, Weinheim, Germany, 2007)

  33. 33.

    E. Fradkin, Field Theories of Condensed Matter Physics, 2nd edn. (Cambridge, UK, 2013)

  34. 34.

    P. Calabrense, J. Cardy, J. Stat. Mech.: Theory Exp. 2004, P06002 (2004)

    Google Scholar 

  35. 35.

    D. Bianchini, O.A. Castro-Alvaredo, B. Doyon, E. Levi, F. Ravanini, J. Phys. A: Math. Theor. 48, 04FT01 (2015)

    Article  Google Scholar 

  36. 36.

    A.S.T. Pires, M.E. Gouvea, J. Magn. Magn. Mater. 241, 31 (2002)

    Article  Google Scholar 

  37. 37.

    L.S. Lima, A.S.T. Pires, J. Phys.: Condens. Matter 19, 436218 (2007)

    Google Scholar 

  38. 38.

    L.S. Lima, Eur. Phys. J. B 93, 99 (2013)

    Article  ADS  Google Scholar 

  39. 39.

    L.S. Lima, Physica B 437, 28 (2014)

    Article  ADS  Google Scholar 

  40. 40.

    M. Takahashi, Phys. Rev. B 40, 2494 (1989)

    Article  ADS  Google Scholar 

  41. 41.

    D.P. Arovas, A. Auerbach, Phys. Rev. B 38, 316 (1988)

    Article  ADS  Google Scholar 

  42. 42.

    A. Auerbarch, Interacting Electrons and Quantum Magnetism (Springer, New York, 1994)

  43. 43.

    I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  44. 44.

    T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  45. 45.

    I. Affleck, M. Oshikawa, Phys. Rev. B 60, 1038 (1999)

    Article  ADS  Google Scholar 

  46. 46.

    M. Oshikawa, I. Affleck, Phys. Rev. Lett. 79, 2883 (1997)

    Article  ADS  Google Scholar 

  47. 47.

    I. Garate, I. Affleck, Phys. Rev. B 81, 144419 (2010)

    Article  ADS  Google Scholar 

  48. 48.

    L.S. Lima, Phys. Status Solidi B 249, 1613 (2012)

    Article  ADS  Google Scholar 

  49. 49.

    L.S. Lima, A.S.T. Pires, J. Magn. Magn. Mater. 320, 2316 (2008)

    Article  ADS  Google Scholar 

  50. 50.

    L.S. Lima, Physica C 549, 147 (2018)

    Article  ADS  Google Scholar 

  51. 51.

    L.S. Lima, J. Magn. Magn. Mater. 454, 150 (2018)

    Article  ADS  Google Scholar 

  52. 52.

    U. Schotte, A. Kelnberger, N. Stusser, J. Phys.: Condens. Matter 10, 6391 (1998)

    ADS  Google Scholar 

  53. 53.

    A.E. Jacobs, T. Nikuni, J. Phys.: Condens. Matter 10, 6405 (1998)

    ADS  Google Scholar 

  54. 54.

    D.N. Aristov, S.V. Maleyev, Phys. Rev. B 62, R751 (2000)

    Article  ADS  Google Scholar 

  55. 55.

    C.J. De Leone, G.T. Zimanyi, Phys. Rev. B 49, 1131 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leonardo S. Lima.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lima, L.S. Effect of Dzyaloshinskii–Moriya interaction on quantum entanglement in superconductors models of high Tc. Eur. Phys. J. D 73, 6 (2019). https://doi.org/10.1140/epjd/e2018-90439-5

Download citation

Keywords

  • Quantum Information