Skip to main content
Log in

Retaining hypothetical photon mass in atomic spectroscopy models

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We revisit the formalism involved in atomic spectroscopy modeling under the assumption that the photon has a finite mass. Starting from the Proca Lagrangian, we build a Hamiltonian suitable for the calculation of line shapes and intensities. Two consequences of finite photon mass are: (i) a dispersion of electromagnetic waves propagating in free space; (ii) the occurrence of a longitudinal polarization state. We illustrate these effects by addressing the spontaneous emission of a massive photon by an excited atom. The Einstein A coefficient and the power spectrum are calculated as an example. If the photon has a finite mass, deviations to standard formulas are showed to occur at energies comparable to the mass energy. A discussion based on the current upper bound estimates for the photon mass is done.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Goldhaber, M.M. Nieto, Rev. Mod. Phys. 82, 939 (2010)

    Article  ADS  Google Scholar 

  2. L.-C. Tu, J. Luo, G.T. Gillies, Rep. Prog. Phys. 68, 77 (2005)

    Article  ADS  Google Scholar 

  3. A.S. Goldhaber, M.M. Nieto, Rev. Mod. Phys. 43, 277 (1971)

    Article  ADS  Google Scholar 

  4. M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

    Article  ADS  Google Scholar 

  5. D.D. Ryutov, Plasma Phys. Control. Fusion 49, B429 (2007)

    Article  ADS  Google Scholar 

  6. L. Bonetti et al., Phys. Lett. B 768, 326 (2017)

    Article  ADS  Google Scholar 

  7. L. Bonetti et al., Phys. Lett. B 757, 548 (2016)

    Article  ADS  Google Scholar 

  8. A. Retinò, A.D.A.M. Spallicci, A. Vaivads, Astropart. Phys. 82, 49 (2016)

    Article  ADS  Google Scholar 

  9. P. Egorov et al., Mon. Not. R. Astron. Soc. 437, L90 (2014)

    Article  ADS  Google Scholar 

  10. A. Accioly, J. Helayël-Neto, E. Scatena, Phys. Rev. D 82, 065026 (2010)

    Article  ADS  Google Scholar 

  11. W. Greiner, J. Reinhardt, Field Quantization (Springer, Berlin, 1996)

  12. J.D. Jackson, Classical Electrodynamics (Wiley, Hoboken, 1999)

  13. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, New York, 1989)

  14. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, New York, 1992)

  15. G. Nienhuis, Physica 66, 245 (1973)

    Article  ADS  Google Scholar 

  16. M. Baranger, Spectral line broadening in plasmas, in Atomic and Molecular Processes, edited by D.R. Bates (Academic Press, New York, 1962), p. 493

  17. H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, 1974)

  18. S. Alexiou, High Energy Density Phys. 5, 225 (2009)

    Article  ADS  Google Scholar 

  19. E. Stambulchik, High Energy Density Phys. 9, 528 (2013)

    Article  ADS  Google Scholar 

  20. M.A. Gigosos, J. Phys. D: Appl. Phys. 47, 343001 (2014)

    Article  ADS  Google Scholar 

  21. J. Rosato, High Energy Density Phys. 22, 60 (2017)

    Article  ADS  Google Scholar 

  22. J. Rosato et al., Phys. Rev. E 79, 046408 (2009)

    Article  ADS  Google Scholar 

  23. C. Cohen-Tannoudji, B. Diu, F. Laloë, in Quantum Mechanics (Wiley, New York, 1991), Vol. 1

  24. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957)

  25. J. Alexander, S. Gulyaev, Astrophys. J. 828, 40 (2016)

    Article  ADS  Google Scholar 

  26. G. Peach, J. Astrophys. Astron. 36, 555 (2015)

    Article  ADS  Google Scholar 

  27. S.V. Stepkin et al., Mon. Not. R. Astron. Soc. 374, 852 (2007)

    Article  ADS  Google Scholar 

  28. E. Churchwell, P.G. Mezger, Astrophys. Lett. 5, 227 (1970)

    ADS  Google Scholar 

  29. J.K.G. Watson, J. Phys. B: At. Mol. Opt. Phys. 39, L291 (2006)

    Article  ADS  Google Scholar 

  30. J.D. Hey, J. Phys. B: At. Mol. Opt. Phys. 47, 165701 (2014)

    Article  ADS  Google Scholar 

  31. K. Ferrière, Rev. Mod. Phys. 73, 1031 (2001)

    Article  ADS  Google Scholar 

  32. F. Nicastro, S. Mathur, M. Elvis, Science 319, 55 (2008)

    Article  ADS  Google Scholar 

  33. D.R. Inglis, E. Teller, Astrophys. J. 90, 439 (1939)

    Article  ADS  Google Scholar 

  34. G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand Company Inc., Princeton, 1950)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Rosato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosato, J. Retaining hypothetical photon mass in atomic spectroscopy models. Eur. Phys. J. D 73, 7 (2019). https://doi.org/10.1140/epjd/e2018-90427-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90427-9

Keywords

Navigation