Skip to main content
Log in

Monte Carlo simulation of the implantation profile of e+ in nanochanneled silicon

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The process of implantation and diffusion of positron in nanochanneled silicon crystals has been simulated in detail through the Monte Carlo technique. Our implantation simulations evidenced the fraction of empty volume inside the sample to be the decisive factor in the determination of the shape of the implantation profile, with the specific shape of the nanoscopic structure playing a marginal role for implantation processes with an energy above 3 keV. Moreover we observed that, due to the high density of surfaces inside of the silicon sample, the subsequent diffusion process is highly suppressed and that thermalized positrons reach the surface of a nanoscopic channel close to their implantation depth. Due to this suppression of the diffusion process, 60–80% of the positrons implanted at an energy comprised between 4 and 13 keV will reach, at thermal energy, the surface of a channel without escaping the sample or undergoing annihilation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Cassidy, Eur. Phys. J. D 72, 53 (2018)

    Article  ADS  Google Scholar 

  2. D.B. Cassidy, P. Crivelli, T.H. Hisakado, L. Liszkay, V.E. Meligne, P. Perez, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. A 81, 012715 (2010)

    Article  ADS  Google Scholar 

  3. S. Aghion et al. (AEgIS Collaboration), Phys. Rev. A 94, 012507 (2016)

    ADS  Google Scholar 

  4. S. Aghion et al. (AEgIS Collaboration), Phys. Rev. A 98 013402 (2018)

    ADS  Google Scholar 

  5. D.B. Cassidy, T.H. Hisakado, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. Lett. 108, 043401 (2012)

    Article  ADS  Google Scholar 

  6. D.B. Cassidy, T.H. Hisakado, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. Lett. 108, 133402 (2012)

    Article  ADS  Google Scholar 

  7. D.B. Cassidy, T.H. Hisakado, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. Lett. 109, 073401 (2012)

    Article  ADS  Google Scholar 

  8. P. Crivelli, D.A. Coole, S. Friederich, Int. J. Mod. Phys.: Conf. Ser. 30, 1460257 (2014)

    Google Scholar 

  9. D.B. Cassidy, S.D. Hogan, Int. J. Mod. Phys.: Conf. Ser. 30, 1460259 (2014)

    Google Scholar 

  10. A. Kellerbauer et al. (AEgIS Collaboration), Nucl. Instrum. Methods Phys. Res. B 266, 351 (2008)

    Article  ADS  Google Scholar 

  11. P.M. Platzman, A.P. Mills Jr., Phys. Rev. B 49, 454 (1993)

    Article  ADS  Google Scholar 

  12. H. Iijima, T. Asonuma, T. Hirose, M. Irako, T. Kumita, M. Kajita, K. Matsuzawa, K. Wada, Nucl. Instrum. Methods Phys. Res. A 455, 104 (2000)

    Article  ADS  Google Scholar 

  13. P. Perez, A. Rosowsky, Nucl. Instrum. Methods Phys. Res. A 545, 20 (2005)

    Article  ADS  Google Scholar 

  14. S. Mariazzi, P. Bettotti, S. Larcheri, L. Toniutti, R.S. Brusa, Phys. Rev. B 81, 235418 (2010)

    Article  ADS  Google Scholar 

  15. S. Mariazzi, P. Bettotti, R.S. Brusa, Phys. Rev. Lett. 104, 243401 (2010)

    Article  ADS  Google Scholar 

  16. Y. Nagashima, Y. Morinaka, T. Kurihara, Y. Nagai, T. Hyodo, T. Shidara, K. Nakahara, Phys. Rev. B 58, 12676 (1998)

    Article  ADS  Google Scholar 

  17. P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988)

    Article  ADS  Google Scholar 

  18. H. Saito, T. Hyodo,New Directions in Antimatter Chemistry and Physics (Kluwer Academic Publishers, Dordrecht, 2001), Chap. 7

  19. M.P. Petkov, C.L. Wang, M.H. Weber, K.G. Lynn, K.P. Rodbell, J. Phys. Chem. B 107, 2725 (2003)

    Article  Google Scholar 

  20. R.S. Brusa, A. Dupasquier,in Proceedings of the International School of Physics “Enrico Fermi”, 2009, p. 245 https://doi.org/10.3254/978-1-60750-646-1-245

  21. J. Dryzek, P. Horodek, Nucl. Instrum. Methods Phys. Res. B 266, 4000 (2008)

    Article  ADS  Google Scholar 

  22. M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66, 3 (1994)

    Article  Google Scholar 

  23. A.F. Makhov, Sov. Phys. Solid State 2, 1934 (1960)

    Google Scholar 

  24. A.F. Makhov, Sov. Phys. Solid State 2, 1942 (1960)

    Google Scholar 

  25. A.F. Makhov, Sov. Phys. Solid State 2, 1945 (1960)

    Google Scholar 

  26. E. Soininen, J. Mäkinen, D. Beyer, P. Hautojärvi, Phys. Rev. B 46, 20 (1992)

    Google Scholar 

  27. J. Algers, P. Sperr, W. Egger, G. Kögel, F.H.J. Maurer, Phys. Rev. B 67, 125404 (2003)

    Article  ADS  Google Scholar 

  28. S. Valkealahti, R.M. Nieminen, Appl. Phys. A 32, 95 (1983)

    Article  ADS  Google Scholar 

  29. S. Valkealahti, R.M. Nieminen, Appl. Phys. A 35, 51 (1984)

    Article  ADS  Google Scholar 

  30. F. Guatieri, Production and excitation of cold Ps for H̄ formation by charge exchange: towards a gravitational measurement on antimatter, Ph.D. Thesis, Università degli studi di Trento, 2018

  31. J. Sempau, J.M. Fernández-Varea, E. Acosta, F. Salvat, Nucl. Instrum. Methods Phys. Res. B 207, 107 (2003)

    Article  ADS  Google Scholar 

  32. J. Baró, J. Sempau, J.M. Fernández-Varea, F. Salvat, Nucl. Instrum. Methods Phys. Res. B 100, 31 (1995)

    Article  ADS  Google Scholar 

  33. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  34. J.M. Fernández-Varea, R. Mayol, J. Baró, F. Salvat, Nucl. Instrum. Methods Phys. Res. B 73, 447 (1993)

    Article  ADS  Google Scholar 

  35. S.K.L. Sjue, F.G. Mariam, F.E. Merrill, C.L. Morris, A. Saunders, Rev. Sci. Instrum. 87, 015110 (2016)

    Article  ADS  Google Scholar 

  36. J.M. Fernández-varea, D. Liljequist, S. Csillag, R. Räty, F. Salvat, Nucl. Instrum. Methods Phys. Res. B 108, 35 (1996)

    Article  ADS  Google Scholar 

  37. V.J. Ghosh, G.C. Aers, Phys. Rev. B 51, 45 (1995)

    Article  ADS  Google Scholar 

  38. J.A. Treurniet, D.W.O. Rogers, NRC Report PIRS-669, Oct, 1999

  39. S. Mariazzi, L. Di Noto, G. Nebbia, R.S. Brusa, J. Phys.: Conf. Ser. 618, 012039 (2015)

    Google Scholar 

  40. R.M. Nieminen, J. Oliva, Phys. Rev. B 22, 2226 (1980)

    Article  ADS  Google Scholar 

  41. K.A. Ritley, K.G. Lynn, V.J. Ghosh, D.O. Welch, M. McKeown, J. Appl. Phys. 74, 3479 (1993)

    Article  ADS  Google Scholar 

  42. R. Krause-Rehberg, H.S. Leipner,Positron Annihilation in Semiconductors – Defect Studies (Springer, Heidelberg, 1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Guatieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guatieri, F., Mariazzi, S. & Brusa, R.S. Monte Carlo simulation of the implantation profile of e+ in nanochanneled silicon. Eur. Phys. J. D 72, 198 (2018). https://doi.org/10.1140/epjd/e2018-90344-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90344-y

Keywords

Navigation