Skip to main content
Log in

Theoretical investigation of the black-body Zeeman shift for microwave atomic clocks

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

With the development of microwave atomic clocks, the Zeeman shifts for the spectral lines of black-body radiation need to be investigated carefully. In this paper, the frequency shifts of hyperfine splittings of atomic ground states due to the magnetic field of black-body radiation are reported. The relative frequency shifts of different alkali atoms and alkali-like ions, which could be candidates of microwave atomic clocks, were calculated. The results vary from −0.977 × 10−17[T(K)/300]2 to −1.947 × 10−17[T(K)/300]2 for different atoms considered. These results are consistent with previous work but with greater precision, detailed derivations, and a clear physical picture.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Porsev, A. Derevianko, Phys. Rev. A 74, 020502(R) (2006)

    Article  ADS  Google Scholar 

  2. D. Jiang et al., J. Phys. B: At. Mol. Opt. Phys. 42, 154020 (2009)

    Article  ADS  Google Scholar 

  3. K. Beloy et al., Phys. Rev. Lett. 97, 040801 (2006)

    Article  ADS  Google Scholar 

  4. B. Arora, M.S. Safronova, C.W. Clark, Phys. Rev. A 76, 064501 (2007)

    Article  ADS  Google Scholar 

  5. M.S. Safronova et al., Phys. Rev. A 87, 012509 (2013)

    Article  ADS  Google Scholar 

  6. M.S. Safronova, U.I. Safronova, Phys. Rev. A 83, 012503 (2011)

    Article  ADS  Google Scholar 

  7. S. Micalizio et al., Phys. Rev. A 69, 053401 (2004)

    Article  ADS  Google Scholar 

  8. U.I. Safronova, M.S. Safronova, Phys. Rev. A 79, 022512 (2009)

    Article  ADS  Google Scholar 

  9. T. Middelmann et al., Phys. Rev. Lett. 109, 263004 (2012)

    Article  ADS  Google Scholar 

  10. M.S. Safronova et al., Phys. Rev. A 87, 012509 (2013)

    Article  ADS  Google Scholar 

  11. W.M. Itano, L.L. Lewis, D.J. Wineland, Phys. Rev. A 25, 1233(R) (1982)

    Article  ADS  Google Scholar 

  12. W. Gao, X. Ke, H. Liu, Acta Opt. Sin. 20, 3 (2000) (in Chinese)

    Google Scholar 

  13. C.J. Foot, Atomic Physics (Oxford University Press, Oxford, 2005)

  14. D.A. Steck, Quantum and Atom Optics (available online at https://doi.org/steck.us/teaching (revision 12, 16 May 2017))

  15. A. Xing, T. Dong, X. Huang, Acta Sin. Quant. Opt. 7, 1 (2001) (in Chinese)

    Google Scholar 

  16. J.B. Chen et al., Chin. Phys. Lett. 18, 2 (2001)

    Google Scholar 

  17. J. Vanier, C. Audoin, in Quantum Physics of Atomic Frequency Standards (CRC Press, Boca Raton, 1989), Vol. 1

  18. G. Dixit et al., J. Phys. B: At. Mol. Opt. Phys. 41, 025001 (2008)

    Article  ADS  Google Scholar 

  19. J. Benhelm et al., Phys. Rev. A 75, 032506 (2007)

    Article  ADS  Google Scholar 

  20. H. Sunaoshi et al., Hyperfine Interactions 78, 241 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Zuo, Y., Zhang, J. et al. Theoretical investigation of the black-body Zeeman shift for microwave atomic clocks. Eur. Phys. J. D 73, 9 (2019). https://doi.org/10.1140/epjd/e2018-90342-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90342-1

Keywords

Navigation