Skip to main content
Log in

Nonlinear ion acoustic waves in a relativistic degenerate plasma with Landau diamagnetism and electron trapping

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We consider the effects of trapping in a relativistic degenerate plasma with quantizing magnetic field. The linear dispersion relation for such an ion acoustic wave is derived and the propagation characteristics of these waves are discussed. The Sagdeev potential for the formation of arbitrary amplitude solitary structures is obtained and it is seen that only compressive solitary structures are formed for the relativistic degenerate quantized magnetoplasma. The dependence of the linear and nonlinear propagation characteristics of ion acoustic waves on different plasma parameters is explored. A comparison is also made with the previous studies. The useful applications of the present investigation in dense astrophysical environments like white dwarf stars and neutron stars, in semiconductor physics, in high-energy density physics, in inertial confinement fusion and in next generation laser–plasma interaction experiments are pointed out.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.V. Demchenko, I.A. El-Naggar, Physica 58, 144 (1972)

    Article  ADS  Google Scholar 

  2. S.L. Shapiro, S.A. Teukolsky,Black holes, white dwarfs and neutron stars: the physics of compact objects (John Wiley & Sons, Inc., New York, 1983)

  3. M.E. Dieckmann, Nonlinear. Process. Geophys. 15, 831 (2008)

    Article  ADS  Google Scholar 

  4. F.C. Michel, Rev. Mod. Phys. 54, 1 (1982)

    Article  ADS  Google Scholar 

  5. A.A. Mamun, P.K. Shukla, Phys. Lett. A 374, 4238 (2010)

    Article  ADS  Google Scholar 

  6. E. Garcia-Berro, S. Torres, L.G. Althaus, I. Renedo, P. Loren-Aguilar, A.H. Corsico, R.D. Rohrmann, M. Salaris, J. Isern, Nature 465, 194 (2010)

    Article  ADS  Google Scholar 

  7. N.L. Tsintsadze, L.N. Tsintsadze, Europhys. Lett. 88, 35001 (2009)

    Article  ADS  Google Scholar 

  8. N.L. Tsintsadze, L.N. Tsintsadze, AIP Conf. Proc. 1177, 18 (2009)

    Article  ADS  Google Scholar 

  9. L.N. Tsintsadze, N.L. Tsintsadze, J. Plasma Phys. 76, 403 (2010)

    Article  ADS  Google Scholar 

  10. B. Eliasson, P.K. Shukla, J. Plasma Phys. 76, 7 (2010)

    Article  ADS  Google Scholar 

  11. L.N. Tsintsadze, https://doi.org/arXiv:0911.0133v1

  12. L.D. Landau, E.M. Lifshitz,Statistical physics, part 1 (Butterworth-, Oxford, 1998)

  13. L.N. Tsintsadze, AIP Conf. Proc. 1306, 89 (2010)

    Article  ADS  Google Scholar 

  14. S. Eliezer, P. Norreys, J.T. Mendonca, K. Lancaster, Phys. Plasmas 12, 052115 (2005)

    Article  ADS  Google Scholar 

  15. A. Markowich, C.A. Ringhofer, C. Schmeiser,Semiconductor equations (Springer, Vienna, 1990)

  16. L.K. Ang, T.J. Kwan, Y.Y. Lau, Phys. Rev. Lett. 91, 208303 (2003)

    Article  ADS  Google Scholar 

  17. T.C. Killian, Nature 441, 297 (2006)

    Article  ADS  Google Scholar 

  18. Y.D. Jung, Phys. Plasmas 8, 3842 (2001)

    Article  ADS  Google Scholar 

  19. M. Opher, L.O. Silva, D.E. Dauger, V.K. Decyk, J.M. Dawson, Phys. Plasmas 8, 2454 (2001)

    Article  ADS  Google Scholar 

  20. W. Masood, S. Karim, H.A. Shah, M. Siddiq, Phys. Plasmas 16, 112302 (2009)

    Article  ADS  Google Scholar 

  21. V.I. Berezhiani, N.L. Shatashvili, N.L. Tsintsadze, Phys. Scr. 90, 068005 (2015)

    Article  ADS  Google Scholar 

  22. W. Masood, H. Rizvi, H. Hasnain, Phys. Plasmas 19, 032314 (2012)

    Article  ADS  Google Scholar 

  23. D. Melrose,Quantum plasmadynamics: unmagnetized plasmas (Springer, New York, 2011)

  24. F. Haas,Quantum plasmas: an hydrodynamic approach (Springer, New York, 2011)

  25. N.L. Tsintsadze, L.N. Tsintsadze, Europhys. Lett. 88, 35001 (2009)

    Article  ADS  Google Scholar 

  26. A.M. Abrahams, S.L. Shapiro, Astrophys. J. 374, 652 (1991)

    Article  ADS  Google Scholar 

  27. D. Lai, Rev. Mod. Phys. 73, 629 (2001)

    Article  ADS  Google Scholar 

  28. I.B. Bernstein, J.M. Green, M.D. Kruskal, Phys. Rev. 108, 546 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  29. A.V. Gurevich, J. Exp. Theor. Phys. 53, 953 (1967)

    Google Scholar 

  30. V.L. Krasovskii, Zh. Eksp. Teor. Fiz. 107, 741 (1995)

    Google Scholar 

  31. H. Abbasi, M.R. Rouhani, D.D. Tskhakaya, Phys. Scr. 56 619 (1997)

    Article  ADS  Google Scholar 

  32. E. Heidari, M. Aslaninejad, H. Eshraghi, Plasma Phys. Control. Fusion 52, 075010 (2010)

    Article  Google Scholar 

  33. J.-M. Deux, MS thesis, Massachusetts Institute of Technology, Cambridge, MA, 2004

  34. R.Z. Sagdeev, inReview of plasma physics (Consultants Bureau, New York, 1996), Vol. 4

  35. V. Malka, J. Faure, Y.A. Gauduel, E. Lefebvre, A. Rousse, K.T. Phuoc, Nat. Phys. 4, 447 (2008).

    Article  Google Scholar 

  36. R.K. Kirkwood, J.D. Moody, J. Kline, E. Dewald, S. Glenzer, L. Divol, P. Michel, D. Hinkel, R. Berger, E. Williams, Plasma Phys. Control. Fusion. 55, 103001 (2013)

    Article  ADS  Google Scholar 

  37. M. Mobaraki, S. Jafari, Commun. Theor. Phys. 66, 237 (2016)

    Article  ADS  Google Scholar 

  38. T. Fulop, F. Pegoraro, V. Tikhonchuk, Eur. Phys. J. D 71, 306 (2017)

    Article  ADS  Google Scholar 

  39. F. Belloni, D. Margarone, A. Picciotto, F. Schillaci, L. Giuffrida, Phys. Plasma. 25, 020701 (2018)

    Article  ADS  Google Scholar 

  40. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  41. A. Pukhov, J. Meyer-ter-Vehn, Appl. Phys. B, Lasers Opt. 74, 355 (2002)

    Article  ADS  Google Scholar 

  42. S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  43. C.G.R. Geddes, C. Toth, J. Van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, Nature 431, 538 (2004)

    Article  ADS  Google Scholar 

  44. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, V. Malka, Nature 431, 542 (2004)

    Article  ADS  Google Scholar 

  45. D.D. Ryutov, R.P. Drake, J.O. Kane, E. Liang, B.A. Remington, W.M. Wood-Vasey, Astrophys. J. 518, 821 (1999)

    Article  ADS  Google Scholar 

  46. D.D. Ryutov, B.A. Remington, H.F. Robey, R.P. Drake, Phys. Plasmas 8, 1804 (2001)

    Article  ADS  Google Scholar 

  47. D.D. Ryutov, B.A. Remington, Phys. Plasmas 10, 2629 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  48. M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Wood-Worth, E.M. Campbell, M.D. Perry, R.J. Mason, Phys. Plasmas 1, 1626 (1994)

    Article  ADS  Google Scholar 

  49. R. Kodama, P.A. Norreys, K. Mima, A.E. Dangor, R.G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimastsu, S.J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K.A. Tanaka, Y. Toyama, T. Yamanaka, M. Zepf, Nature 412, 798 (2001)

    Article  ADS  Google Scholar 

  50. A.J. Willes, K. Wu, Mon. Not. R. Astron. Soc. 348, 285 (2004)

    Article  ADS  Google Scholar 

  51. H.A. Shah, M.N.S. Qureshi, N.L. Tsintsadze, Phys. Plasmas 17, 032312 (2010)

    Article  ADS  Google Scholar 

  52. H.A. Shah, W. Masood, M.N.S. Qureshi, N.L. Tsintsadze, Phys. Plasmas 18, 102306 (2011)

    Article  ADS  Google Scholar 

  53. H.A. Shah, M.J. Iqbal, N.L. Tsintsadze, W. Masood, M.N.S. Qureshi, Phys. Plasmas 19, 092304 (2012)

    Article  ADS  Google Scholar 

  54. M.J. Iqbal, W. Masood, H.A. Shah, N.L. Tsintsadze, Phys. Plasmas 24, 014503 (2017)

    Article  ADS  Google Scholar 

  55. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, inRelativistic quantum theory, part I, 1st edn. (Pergamon Press Ltd., Pergamon, Oxford, 1971), Vol. 4.

  56. D. Koester, G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990)

    Article  ADS  Google Scholar 

  57. J. Landstreet, Phys. Rev. 153, 1372 (1967)

    Article  ADS  Google Scholar 

  58. V.M. Lipunov,Neutron star astrophysics (Nauka, Moscow, 1987)

  59. S.S. Ghosh, G.S. Lakhina, Nonlinear Process Geophys. 11, 219 (2004)

    Article  ADS  Google Scholar 

  60. G.S. Bisnovati-Kogan, Astron. Zh. 47, 813 (1970)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M.J., Shah, H.A., Masood, W. et al. Nonlinear ion acoustic waves in a relativistic degenerate plasma with Landau diamagnetism and electron trapping. Eur. Phys. J. D 72, 192 (2018). https://doi.org/10.1140/epjd/e2018-90309-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90309-2

Keywords

Navigation